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AFIT/GAE/ENY/06-J08 
Abstract 

The Air Force Institute of Technology’s (AFIT) Advanced Navigation 

Technology (ANT) Center has recently delved into the research topic of small Unmanned 

Aerial Vehicles (UAV).  One area of particular interest is using multiple small UAVs 

cooperatively to improve mission efficiency, as well as perform missions that couldn’t be 

performed using vehicles independently.  However, many of these missions require that 

the UAVs operate in close proximity with each other.  This research lays the foundation 

required to use the ANT Center’s UAVs for multi-vehicle missions (e.g. cooperatively) 

by accomplishing two major goals.  First, it develops test procedures that can be used to 

characterize the tracking performance of a small UAV being controlled by a waypoint 

guided autopilot.  This defines the size of the safety zones that must be maintained 

around each vehicle to ensure no collisions, assuming no, as yet unspecified, collision 

avoidance algorithm is being implemented.  Secondly, a formation flight algorithm is 

developed that can be used to guide UAVs relative to each other using a waypoint guided 

autopilot.  This is done by dynamically changing the waypoints.  Such an approach gives 

a “wrap-around” method of cooperatively controlling UAVs that can only be guided 

waypoint-to-waypoint.  For both components of this research, tests were conducted using 

a hardware-in-the-loop (HITL) simulation before validating through flight testing.  This 

report, along with legacy documentation and procedures, furthers the UAV test bed at 

AFIT and establishes methods for simulating, visualizing, and flight testing multiple 

UAVs during formation/cooperative flight.   
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CHARACTERIZATION OF UAV PERFORMANCE AND DEVELOPMENT OF 
A FORMATION FLIGHT CONTROLLER FOR MULTIPLE SMALL UAVS 

 
 

I.  Introduction 

1.1 – Motivation 

Autonomous formation flight of unmanned aerial vehicles (UAVs) is a high 

priority within the Armed Forces and aerospace industry.  The applications of UAVs are 

both numerous and valuable, especially for Department of Defense (DoD) objectives.  

UAVs of all sizes are being used in modern warfare because they remove the danger to 

human pilots from military operations as well as offer capabilities beyond those of 

piloted aircraft.  Their possible uses include convoy protection, intelligence, surveillance 

and reconnaissance (ISR), autonomous combat operations and rapid over-the-hill 

surveillance for ground troops, to mention just a few.   

Small UAVs in particular have become a recent research thrust for the DoD as 

well as the aerospace industry for many of the missions named above (Jodeh, 2005).  

With increasing scrutiny on the discrimination of military warfighting tactics, the 

necessity for precision operations by small UAVs in small, possibly urban battlefields 

becomes obvious.  A small, inexpensive UAV capable of providing rapid intelligence to 

troops in the field would provide invaluable information currently out of reach by 

intelligence aircraft flying thousands of feet overhead.   

Inexpensive, small UAVs also provide researchers the opportunity to investigate a 

number of autonomous flight applications without having to run costly wind-tunnel 

experiments or full-scale flight tests.  There are a number of commercial-off-the-shelf 
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(COTS) UAVs available today for just a few hundred dollars, as well as COTS autopilot 

systems for just a few thousand dollars.  These autopilot systems often come with 

hardware in the loop (HITL) simulation software, which offers the opportunity to verify 

performance before flight testing.  Autopilots often are grouped with the UAV itself in 

the emerging term, Unmanned Aerial System (UAS), which will be used throughout this 

thesis when referring to both the UAV and the autopilot. 

  While UASs have been studied in-depth over the years on full-scale aircraft 

using expensive, proprietary technology (Osteroos, 2005), autonomous flight using small, 

inexpensive, commercial-off-the-shelf (COTS), waypoint-guided autopilots is a relatively 

new area of research.  There is very little performance information available regarding 

the ability of these autopilots to accurately control small UAVs, let alone during 

formation or cooperative flight.  There are just a few research test beds around the 

country that have been studying small UAVs over the past few years. 

The Air Force Institute of Technology (AFIT) has recently established a UAS test 

bed at its Advanced Navigation Technology (ANT) Center, and is pursuing many 

research thrusts regarding these small UASs.  Current topics of research include obstacle 

and collision avoidance, automated refueling, wind-correction, and formation flight.  

Prior to this thesis, Jodeh established the research platform by modeling, simulating, and 

performing initial flight tests (Jodeh, 2006).  This research is being done concurrently 

with other AFIT MS Theses on boundary warning systems and synthetic vision (Dugan, 

2006) and wind correction (Robinson, 2006).  These theses are the first steps in setting up 

a research test bed at AFIT that will have greater research capabilities in the future.   
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The University of Pennsylvania developed and validated a hybrid model and 

experimentally controlled multiple UASs in 2004.  Their hybrid model goes beyond the 

high-level autopilot controller and incorporates mode-switching logic using code 

developed in-house (Bayraktar et al., 2004).   

Since 1997, The Massachusetts Institute of Technology’s (MIT) Aerospace 

Controls Lab has published an extensive list of papers on various UAS topics in such 

areas as formation flying and carrier-phase differential GPS relative navigation, task 

assignment and path planning for UASs and spacecraft, and robust, nonlinear, and 

adaptive control.  They have gone beyond the mere waypoint guided autopilots and 

developed their own optimized formation flight controllers and installed onboard 

computers so that the aircraft are wirelessly networked, and demonstrated these 

capabilities through experimental flight tests (Tin, 2004; King, 2004). 

The University of California Berkeley’s Center for the Cooperative Control of 

Unmanned Vehicles and the California Institute of Technology worked with both fixed 

and flocking formations for convoy protection and obstacle avoidance (Ryan et al., 

2004).   

There are several other UAS research test beds at universities, industrial research 

centers, and government laboratories across the country, including one at the Air Force 

Research Laboratory’s Air Vehicles Directorate, with which the ANT Center at AFIT is 

collaborating. 

Despite the number of groups currently working in the research area of small 

UASs, there are relatively few groups that have successfully flown multiple aircraft in 
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autonomous formation flight.  According to Cloud Cap Technologies, the manufacturer 

of the Piccolo II autopilot used by most of the research groups, successful formation 

flight was first accomplished by the UCLA group in conjunction with Advanced 

Ceramics Research (ACR) in 2003, and has since been accomplished by the MIT group 

in 2004 (Cloud Cap, 2006).  Multiple UASs were flown in 2005 by NASA and again in 

2005 by Lew Aerospace using a specially developed operator interface (Cloud Cap, 

2006).  Their ground station was developed by Northrop Grumman and supports multi-

vehicle operation over a single communications channel without any Piccolo II source 

code modification (Cloud Cap, 2006).   

Because one of the goals of this thesis is to develop methods for formation flight 

that might extend to autopilot systems other than the Piccolo II, modification of the 

source codes of the autopilot or Operator Interface systems will be avoided.  Instead, the 

Communications Software Development Kit (SDK), provided by the autopilot 

manufacturer, will be used to develop a user interface that interacts with the avionics.  

The formation flight algorithm developed in this thesis will be developed in as robust a 

method as possible, so that it might be applied to different waypoint-guided autopilots as 

well. 

 

1.2 – Problem Statement 

The goal of this research is to further the development of the UAV test bed at the 

Air Force Institute of Technology’s ANT Center by characterizing the performance 

capabilities of small UASs using waypoint-guided autopilots and developing a formation 
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flight algorithm for such a UAS.  The study of small UASs is relatively new, and there is 

little information available regarding their performance.  The problem is complicated by 

the fact that a given UAS’s performance significantly varies under different 

configurations, wind conditions, communications delays, and UAS dynamics.  A detailed 

characterization of performance capabilities will determine the precision that can be 

achieved during formation flight and other multi-vehicle operations, such as cooperative 

control.  This thesis addresses some of the preliminary issues that must be considered in 

order to successfully implement autonomous formation/cooperative flight of UASs.  

Once the performance limits have been established, an autonomous, waypoint-guided 

formation flight algorithm will be developed and verified through HITL testing and then 

validated through experimental flight testing. 

 

1.3 – Research Objectives 

• Develop flight test procedures that will determine the guidance and control 

characteristics of the UAS under various configurations. 

• Determine the precision of formation flight that can be expected using 

particular UAS configurations.   

• Develop a user interface that will interact with a waypoint-guided UAS 

and automatically update waypoints to position a trailing aircraft based on 

its relative position from a lead aircraft. 

• Demonstrate the precision prescribed by the previously determined 

performance envelope using HITL simulation.   
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• Establish performance limits due to communications limitations for 

various airspeeds and configurations. 

• Demonstrate the waypoint guided formation flight control through flight 

testing using a simulated lead aircraft with a follower UAS flying 

autonomously in formation. 

1.4 – Significance of Research 

The significance of this research is that it furthers the work done by Jodeh in 2006 

in establishing the UAV test bed at the Air Force Institute of Technology’s ANT Center, 

and provides a foundation for future formation and cooperative flight testing.  

Specifically, it provides a systematic procedure that can be used to characterize the 

precision with which a UAS can be maneuvered.  This is essential information when 

operating multiple vehicles in close proximity of each other.  This research also provides 

a formation control algorithm that can be used to operate waypoint guided UASs in 

formation or cooperatively; thus providing a retrofit for vehicles that can only be 

controlled waypoint-to-waypoint. 

Furthermore, this thesis marks the first application of the SDK with the aircraft at 

AFIT, and will provide future students with a valuable guide to interacting with the 

avionics through the user interface developed at AFIT.  This thesis develops procedures 

for flying multiple vehicles during HITL simulations with visualization as well as for 

experimental flight tests.  These established procedures will save future researchers 

countless hours in familiarizing themselves with the autopilot system and allow them to 

instead focus on research.  While complex formation flight controllers have been 
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developed by several other research groups using their own code, there is no published 

information available on using the SDK to write a simple formation flight controller by 

updating waypoints.  This thesis will provide future research groups the opportunity to 

take the first step in autonomous formation flight without writing complex code. 

1.5 – Methodology 

The first step towards formation flight was setting up the hardware and software 

for multiple aircraft operation.  Members of the UAV group at AFIT wrote procedures in 

2005 for setting up Flight Gear, a common freeware flight visualization tool, for multiple 

vehicles (Vaglienti et al., 2005).  The Operator Interface software provided with the 

Piccolo II autopilot allows for the simultaneous operation of up to 10 vehicles.  The 

simulator was set up on a separate but networked computer for interaction with the 

operator interface and ground station.  The intial setup was performed by Jodeh and the 

ANT Center UAV group in 2005 (Jodeh, 2006).   

The Communications SDK was used to develop a formation flight controller 

implemented in C++.  The code takes the position data of the lead aircraft, transforms it 

from Latitude, Longitude, Altitude (LLA) coordinates to East, North, Up (ENU) 

coordinates, and sends a new waypoint command to the trail aircraft based on a user-

defined formation.  It also adjusts the airspeed of the trail aircraft based on its distance 

behind the desired waypoint.  For example, the trail flies much faster than the lead when 

it is a greater distance away, in an effort to catch up.  When the trail aircraft gets closer to 

the lead aircraft, its commanded airspeed is set to more closely match the lead’s.  

Because the communication of the ground station to the airborne autopilot is limited to a 
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speed of 1 Hz, the trail aircraft cannot get too close to the lead or it will pass the waypoint 

before a new waypoint is commanded.  Therefore, there is a limitation on the formation 

separation based on airspeed. 

Simulations were then run to establish performance limits on a single aircraft.  

Jodeh’s thesis involved tweaking gains to improve autopilot performance, so the gains set 

by that research will be used here (Joseh, 2006).  Any performance limits established 

during this research will be specific to this particular set of gains, which have not been 

optimized.  Improvements to these gains could be done in future research, which could in 

turn improve the performance capabilities of the aircraft.  However, the procedures 

established in this research can be applied to quickly characterize performance 

capabilities under future sets of gains. 

Simulations will determine how far an aircraft deviates from a flight path by 

determining how close the aircraft comes to “hitting” each waypoint, and that deviation 

will be assigned as a formation limitation.  Formation flight will then be simulated using 

the formation flight controller to send waypoint, speed, and altitude commands to the trail 

aircraft.  The speed of response to lead maneuvers will be measured by importing the 

telemetry and control data to a MATLAB program, and formation performance 

capabilities will be established. 

  

1.6 – Assumptions/Limitations 

There are safety considerations that limit the ability to simultaneously fly multiple 

aircraft at this time.   
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1.7 – Preview 

Chapter II examines the equipment used for the HITL, flight-testing, and the 

implementation of the formation flight controller.  Chapter III walks through the actual 

development of the formation flight controller.  Chapter IV covers the HITL simulations.  

Chapter V details the flight testing procedures that will govern single and multiple 

aircraft operation.  Chapter VI compares the simulation results to the flight test results.  

Finally, Chapter VII provides conclusions and recommendations.  All notable code and 

data is attached as Appendices. 
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II. Background 

2.1 – Overview 

The purpose of this chapter is to provide background information on all the 

equipment used during this research.  Details of the aircraft and avionics will be included.  

Flight testing procedures will be discussed, as well as the basics of formation flight.  Any 

other information necessary for a proper understanding of the thesis will be discussed.  

Finally, there will be a discussion on the collection and utilization of the Piccolo 

autopilot’s telemetry and control data. 

2.2 – Aircraft 

2.2.1 – Airframe 

The airframe chosen was the SIG Rascal 110.  It was chosen for a number of 

reasons, including its large payload capacity, relatively stable performance 

characteristics, and its use across the country by other UAV research groups.  Groups 

from the University of California Berkeley and the University of Colorado have each 

recently flown SIG Rascals in UAV related research applications mostly regarding 

vision-based navigation (Frew, et al, 2005).  The Rascal 110 has a 110 inch wingspan, a 

high wing, and a tail wheel configuration.  It was modified by AFIT to use a 50 oz fuel 

tank, which puts its endurance close to 2 hrs.  The Rascal makes use of a hybrid airfoil 

that, according to the manufacturer, is a combination of the upper surface of an Eppler 

193 and the lower surface of an Eppler 205, joined at the chord lines.  Performance data 

about the aircraft and airfoil, as well as information regarding its weight, stability, and 
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balance, was presented by Jodeh (Jodeh, 2006).  The aircraft comes disassembled but is 

Almost Ready to Fly (ARF).  Once familiarized with the aircraft construction, the UAV 

group at AFIT is able to construct a fully capable Rascal in approximately 40 hours. 

 

Figure 1 - SIG Rascal 110 

2.2.2 – Engine and Propeller 

The aircraft is powered by a FS-120S III four-cycle engine manufactured by O.S. 

Engines.  It comes equipped with a diaphragm fuel pump, matching carburetor, and built-

in pressure regulator, and outputs 2.1 horsepower at 12,000 rpm.  The engine displaces 

1.218 cubic inches (20 cc) (Engine Manual, 2000).  A 16 x 8 propeller from APC was 

fitted to the engine.  This combination of engine and propeller is capable of pulling the 

Rascal 110 faster than 60 knots under fair conditions. The engine is shown in Figure 2 

(Engine Manual, 2000) and the propeller in Figure 3. 
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Figure 2 - FS-120S III Engine 

 

 
Figure 3 - 16 x 8 APC Propeller 

 

2.3 – Avionics 

The Avionics system has several major components, including the Piccolo II 

autopilot by Cloud Cap Technologies, the basic R/C system, servo actuators, and the Fail 

Safe Control Relay. 
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2.3.1 – Piccolo II Autopilot 

The Piccolo II Autopilot is available for commercial purchase from Cloud Cap 

Technologies.  It provides added functionality and flexibility from the original Piccolo I 

and PiccoloPlus, and can be used on both fixed-wing aircraft and helicopters.  It has been 

incorporated on aircraft ranging from 3 lbs all the way up to nearly 1500 lbs.  Its 

widespread use throughout the UAV research field can partially be attributed to its small 

size.  The airborne component measures 5.25 inches deep by 2.5 inches high by 2.0 

inches wide and weighs just over half of a pound.  The Piccolo II is backwards 

compatible with previous Piccolo autopilots.  The entire autopilot system consists of the 

airborne avionics, Ground Station Interface, HITL simulator, software, and a manual 

control box. 

The airborne component, referred to as the Piccolo II, is shown in Figure 4 

(Vaglienti et al., 2005).  It incorporates a Motorola MPC555 microcontroller that 

processes inputs through a Reduced Instruction Set Computer (RISC).  It provides 

40MHz PowerPC operation, according to its manufacturers (Vaglienti et al., 2005).  The 

Piccolo II collects air data through a dual ported mpxv50045 4kPa dynamic pressure 

sensor, an absolute ported mpx4115a barometric pressure sensor, and a board 

temperature sensor.  It uses this data to calculate true airspeed (TAS), absolute altitude, 

and ambient air temperature.  It makes use of three ADXRS300 gyros and dual two-axis 

ADXL210e accelerometers for rate and acceleration measurements (Vaglienti et al., 

2005). 
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Figure 4 - Piccolo II Airborne Avionics Package  

 

The Piccolo II estimates wind by calculating the difference between GPS Ground 

Speed and TAS each time the aircraft turns.  Attitude and gyro bias are estimated by a 

Kalman filter, which uses the GPS-derived pseudo-attitude as the measurement 

correction (Vaglienti et al., 2005).   

The Piccolo II datalink is built on a 1W 900MHz and a 1W 2.4GHz radio modem, 

and sends command and control, autopilot telemetry, payload data transfer functions, 

differential GPS corrections uplink, and pilot in the loop modes at rates up to 40Kbaud.  

The datalink architecture is designed in a way that allows a single operator interface to 

control multiple aircraft from a single ground station (Vaglienti et al., 2005).  The GPS 

receiver used by the Piccolo II is the μBlox TIM LP, an update from previous systems.  

The μBlox has an output of 4Hz.  The avionics system controls up to 10 servo outputs 

and two independent Controller Area Network (CAN) buses.  The pulse width 



 

15 

modulation (PWM) outputs can be operated in two basic modes: 5-channel mode and 10-

channel mode.  The system at AFIT will operate on a 5-channel mode.  Figure 5 shows 

the avionics relationships in the form of a block diagram (Vaglienti et al., 2005).  

 

 
Figure 5 - Piccolo II Block Diagram  

 

The ground equipment includes the Ground Station, a UHF antenna, a GPS 

antenna, a laptop, and an R/C control box, and is shown in Figure 6.  For HITL 

simulations, a second computer is generally needed to run the Simulator, and is 

connected to the Ground Station through a USB to Controller Area Network (CAN) 
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module.  The R/C control box is only for pilot-in-the-loop operation, and can be 

disregarded for autonomous flight.  It is necessary as a safety precaution, so that 

operation can be switched from autonomous flight to piloted flight in emergencies or 

during testing.  The laptop is used to run the Operator Interface, provided by the 

manufacturer.  It provides a user-interface for interacting with the avionics, and is 

capable of sending commands and updating gains in real-time.  It also receives and logs 

all data received from the autopilot, including telemetry and control, equipment status, 

communications status, etc.  An example of one of the windows of the Operator 

Interface, the one used to manipulate gains, is shown in  

Figure 7. 

 
 

Figure 6 - Ground Equipment Minus Laptop 
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Figure 7 - Operator Interface  

 

Finally, the Ground Station manages the communications between the laptop and 

the airborne autopilot.  It also interfaces to the pilot-in-the-loop console and supervises  

all of the communications links when multiple networks are in operation.  

Communication between multiple networks and the Ground Station is shown in Figure 8. 
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Figure 8 - Overview of Ground Station Communication Architecture 

2.3.2 – Radio Control System 

The Radio Control system consists of an 8 channel Futaba 9CAP/9CAF 

transmitter with an R149DP PCM 1024 receiver. 

2.3.3 – Fail Safe Control Relay 

As a safety precaution, the Air Force Research Labs Sensors Directorate 

(AFRL/SN) designed a Fail Safe Control Relay.  Developed before this thesis was 

started, the Fail Safe Control Relay functions as an automatic switch between R/C 

transmitter and autopilot controller if a loss of communications occurs.  In his thesis, 

Jodeh describes the system in more detail (Jodeh, 2006).  A diagram showing the 

interaction between the avionics systems and power paths is shown in Figure 9. 
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Figure 9 - Avionics Communications 

 

2.4 – Visualization 

HITL simulations need not be visualized, but it is a valuable tool for mentally 

translating data into actual aircraft performance.  The visualization software provided 

with the Piccolo II is the Flight Gear flight simulator, an open source program that is 

capable of receiving UDP network packets from a separate PC.  Cloud Cap Technology’s 

User Manual describes the setup of Flight Gear in detail in the Hardware in the Loop 

Simulator for Piccolo Avionics section.  The setup of a single visualization PC is shown 

in Figure 10. 
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Figure 10 - HITL Simulation with Visualization 

 The setup for visualization of multiple aircraft is only slightly more complicated.  

On a local network, multiple simulators can be running off of the same Ground Station 

and Operator Interface.  Each simulator simply has to send UDP packets to a different IP 

address, and Flight Gear has to be initialized with a few simple command line parameters 

(Vaglienti et al., 2005).  A multiple aircraft visualization is shown in Figure 11. 
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Figure 11 - Multiple Aircraft Displayed in Flight Gear 

 

2.5 – Basics of Formation Flight 

2.5.1 – Coordinate Transformation 

All GPS data received by the avionics comes in Latitude/Longitude/Altitude 

(LLA) coordinates, which makes a transformation into a simpler coordinate system 

necessary.  East/North/Up (ENU) coordinates are based in Cartesian coordinates, which 

makes them much easier to work with and allows for a better performance evaluation.  

The limits of formation flight will be determined by the ability to track waypoints under 
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varying conditions; so the physical distance between an aircraft’s targeted position and 

actual position must be known. 

ENU is a commonly used inertial coordinate system for aircraft, and is similar to 

North, East, Down (NED), which varies only in a sign change on the altitude coordinate.  

Converting from LLA to ENU is not possible through any single rotation matrix.  First, 

the LLA coordinates must be converted to Earth-Center-Earth-Fixed (ECEF) coordinates 

before they can be converted to ENU.  ECEF coordinates are cartesian coordinates that 

define a three-dimensional position with respect to the center of mass of the Earth, as 

illustrated in Figure 12 (Baleri, 2006).  The conversion is done through a series of steps 

which will now be described. 

 

Figure 12 – ECEF Coordinate Reference Frame 

A base point must first be established in ECEF coordinates.  For this, an arbitrary 

reference point in LLA coordinates was chosen near the flight test area.  This coordinate 
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was converted to ECEF coordinates (x,y,z) according to the following equations (Baleri, 

2006). 
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where 

 a = semi-major axis of Earth = 6378137m 

 b = semi-minor axis of Earth = 6356752.31424518m 

 γ = latitude of reference point 

 λ = longitude of reference point 

 h = height above ellipsoid 

 N = Radius of Curvature 

 

The numerical values used for each axis are based on the commonly used WGS-84 

geodetic datum (Baleri, 2006).  The value for h an altitude above ground level. 

 Next, quaternions were used to convert from ECEF to ENU coordinates.  While it 

is possible to convert between ECEF and ENU through Euler angle rotations, these 

angles are based on trigonometric functions that face singularity problems at certain 
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values.  Quaternions, on the other hand, involve a four parameter system not based on 

trigonometric functions, thereby eliminating any singularity problems.  A more detailed 

discussion of quaternions can be found in detail in (Stevens, 2003).   

 The quaternion conversion between ECEF and ENU coordinates is commonly 

encountered and is available open source.  Figure 13 and Figure 14 show the 2-

dimensional flight path of the same simulation in LLA and ENU coordinates, 

respectively.  Figure 15 and Figure 16 show the same simulation from a 3-D perspective. 
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Figure 13 - Simulation in 2-D LLA Coordinates 
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Figure 14 - Simulation in 2-D ENU Coordinates 



 

26 

 

-84.11 -84.105 -84.139.775 

39.78 
305 
320 
335 
350 
365 
380 
395 
410 
425 

Longitude (deg)

HITL Autopilot Simulation #1 : TAS(16m/s), Alt(400m)

Latitude (deg)

Al
tit

ud
e 

(ft
) 

UAV Flight Path
Desired Waypoints,Flight Path, and Altitude (400m) 

 

Figure 15 - Simulation in 3-D LLA Coordinates 
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Figure 16 - Simulation in 3-D ENU Coordinates 
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2.5.2 – Formation Flight 

Formation flight, as discussed in this thesis, consists of a lead aircraft and at least 

one follower whose commands are determined by maneuvers of the lead.  The Piccolo II 

is a waypoint-guided autopilot system; so the simplest form of formation flight involves 

sending continuously updating waypoints to the follower aircraft based on the lead 

aircraft’s position.  The trail aircraft’s airspeed will also have to be adjusted based on its 

relative position to the lead.   

The relative position of the trail aircraft will be a function of three variables, the 

2-D separation in the North-East plane, R, the altitude separation in the Up plane, Z, and 

the angle formed between the reverse of the lead aircraft’s heading and the trail aircraft’s 

position, θ.  Figure 17 shows formation flight using these variables.  Because this thesis 

will employ waypoint-guided navigation rather than sending surface deflection 

commands, the Euler angles and surface deflections of the lead aircraft do not need to be 

known by the trail aircraft.  Chapter IV will discuss the insertion of waypoints and 

adjusting of commands to the trail aircraft in more detail. 
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Figure 17 - Formation Frame of Reference 

2.6 – Flight Testing 

Flight testing was conducted at WPAFB during June 2006.  The following section 

will provide a brief introduction to the flight testing process. 

2.6.1 – Overview of Flight Testing 

Much of the work to set up flight testing operations for the ANT Center’s UAV 

test bed was performed by Jodeh (Jodeh, 2006).  The aircraft’s status as Almost-Ready-

to-Fly led to relatively few gain-tuning flight tests before autonomous flight testing was 

possible.  Jodeh’s thesis provides a more detailed discussion of the flight testing process 

(Jodeh, 2006). 
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2.6.2 – Flight Test Range and Equipment 

Flight tests were conducted over a large enclosed runway area located on Area B 

at Wright-Patterson AFB.  The trapezoidal-shaped area that was approved by the Safety 

Review Board is shown in Figure 18. 

 

Figure 18 - WPAFB Area B Flight Test Range 

 

2.6.3 – WPAFB Flight Testing Criteria 

 There were a number of concerns for flight testing on WPAFB.  The 

base’s proximity to major roads and residential areas, as well as its normal aircraft 

operations, led to a stringent set of rules for flight testing that had to be approved by three 

review boards, including a Configuration Control Board (CCB), a Safety Review Board 

(SRB), and a Technical Review Board (TRB).  A number of guidelines were set based on 

the recommendations of those boards, advice from AFRL/SN flight test team, expert R/C 
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pilots, and Cloud Cap Technologies (Lozier et al., 2005).  Table 1 outlines some of those 

guidelines (Jodeh, 2006). 

 
 

Table 1 - Flight Testing Criteria 
Winds Less than 30 mph 

Temperature Greater than 40°F 

Visibility Greater than 3 Miles 

Cloud Ceiling Minimum 500 ft AGL 

Airspace Ceiling Maximum 400 ft AGL 

GPS Satellites 6 or more visible 

Radio Frequency Interference Check 

Safety Equipment and First Aid Kit 

Pitch, Roll, and Yaw Rate Gyro Operations 

Static and Dynamic Pressure Port Operation 

WPAFB Control Tower Notification 

 

 

2.7 – Collection and Management of Telemetry and Control Data 

The Piccolo II autopilot logs telemetry and control data through the Operator 

Interface.  It logs 70 total parameters at sampling rates of either 20Hz or 1Hz.  The 

different sampling rates, termed “request fast” for 20Hz and “request slow” for 1Hz, are 

necessary because of the incredible size each log can reach.  With a 20Hz data collection 
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rate, files can grow to over 30Mb in just 30 minutes of simulation or flight.  In a one hour 

flight sampling at 20Hz, the logs could include telemetry and control data for up to 

72,000 samplings, or over half a million data points.  Dealing with data files this large 

becomes exceedingly difficult using normal data-manipulation software such as 

Microsoft Excel or MATLAB.  Therefore, the 20Hz setting was only used during 

maneuvers that required studying.  In between maneuvers, the rate was switched to 1Hz.   

Once a flight was completed and the Operator Interface was closed, the logs could 

be read into Microsoft Excel.  The log files listed the data in columns below a text 

header.  Excel was able to import the data, which was delimited by spaces.  Certain 

parameters could be thrown out because they were irrelevant to this research, including 

onboard temperatures, battery voltages, GPS signal strengths.  Of the 70 parameters, the 

only values of importance to this thesis are listed in Table 2. 

Table 2 - Important Logging Parameters 
Time (ms) 

Hours 

Min 

Sec 

Latitude 

Longitude 

Altitude 

TAS 

Target_Waypoint_Index 
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This simplified log file was then saved and imported to a MATLAB workspace, 

which created column vectors for each parameter.  The data was imported into Excel 

before MATLAB because MATLAB is less able to deal with certain non-numerical 

parameters.  Those columns were erased in Excel, prior to importing the data to 

MATLAB.  Once in MATLAB, these new column vectors of parameters could be 

manipulated and particular portions of them could be graphed based on the timing of 

aircraft maneuvers.  The indices of important times were recorded during testing to 

properly plot important data corresponding to particular maneuvers. 

Collecting data for formation flight was slightly different.  The Operator Interface 

does not record formation information, such as separations and bearings; so the user 

interface for the formation flight controller was modified to output certain parameters 

directly to a text file at the same sampling rate as the Operator Interface.  All flight 

formation data was sent to this file as well as the timestamp corresponding to each line of 

data.  These text files were then read into Excel and MATLAB in the method described 

above. 

 

2.8 – Chapter Conclusion 

The hardware involved in this project was almost entirely COTS, with the 

exception of the Fail Safe Control Relay.  The flight testing procedures and data 

collection tools have been established.  The LLA to ENU coordinate transformation 

facilitated the evaluation of the aircraft’s flight (e.g. the accuracy of the guidance and 

control).  The simulation tools provided and procedures established will provide a 
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valuable, safe way to run experiments without the risk of an actual flight test.  Chapter III 

will detail the methodology behind implementing the Software Development Kit. 
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III.  Waypoint Guided Formation Flight Controller 

3.1 – Chapter Overview 

This chapter will first provide an overview of the Piccolo II communications and 

the capabilities of the Software Development Kit (SDK).  Next, the formation flight 

controller developed using the SDK will be described.  Finally, there will be a discussion 

on the tuning of the formation flight controller based on simulations. 

3.2 – Piccolo II Communications Overview 

The MHX 900Mhz or 2.4GHz ISM band radio form a wireless link between the 

airborne avionics and the ground station.  It operates on a frequency hopping network 

that enables the ground station to communicate to multiple networks at once.  Running 

simultaneous networks brings up the need for some sort of flow control, which the 

Piccolo II manages in a “round robin” fashion, where it looks for data from each network 

one after the other (Vaglienti et al., 2005). 

Each network sends packets over the datalink that is destined for a particular 

stream, which is identified by the first byte in the packet.  The communications for the 

ground station are just slightly more complicated because it must multiplex stream data 

because of its interaction with multiple networks at once.  A more detailed explanation of 

the Piccolo II Communications can be found in the Communications for the Piccolo 

Avionics section of the Piccolo User’s Manual.  Figure 19 diagrams the communications 

of the autopilot system (Vaglienti et al., 2005). 
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Figure 19 – Piccolo II Communications Facilities 

 

3.3 – Software Development Kit Overview 

The Communications Software Development Kit (SDK) provides a method for 

interacting with the avionics without altering the Piccolo II source code.  While the SDK 

calls for the development of any software in C++, it is a hybrid mix of C and C++ 

because the avionics and ground station software were written entirely in C (Vaglienti et 

al., 2005). 

The SDK creates a simple Win32 Application and provides a Communications 

Manager (CommManager) Class , which serves as the basis for interacting with the 

avionics through the formation flight controller.  The CommManager provides a number 

of functions for sending and receiving packets from the avionics.  The user is tasked with 

writing functions that alter any commands the avionics is receiving and sending those 

new commands back to the avionics.   

 

3.4 – Formation Flight Controller Development 

Using the SDK, a controller was developed that allows for formation flight using 

a waypoint-insertion/airspeed adjustment/altitude adjustment method. 
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 3.4.1 – Waypoint Insertion 

To determine the proper position for waypoint insertion, the position and 

orientation of the lead aircraft must be known.  The ground station receives all positional 

data in LLA coordinates; so they are first transformed to ENU coordinates using the 

method described in Chapter 2.5.1.  The new desired waypoint position for the trail 

aircraft is then calculated based on a desired two-dimensional radial separation, a bearing 

from the lead aircraft, and an altitude separation.  The bearing towards the lead aircraft is 

based on the angle between the desired position and the reverse of the lead aircraft’s 

heading.  For example, if a desired position is 50m radial separation, 0m altitude 

separation and 45° bearing, the desired waypoint would be inserted as shown in Figure 

20.  The formation flight controller developed has a number of predefined formations, 

shown in Figure 21 and described in Table 3.  The formation flight controller developed 

allows a user to change a variety of inputs, including altering the formation in real-time.  
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Figure 20 - Formation Example 

 

Table 3 - Formations 
Formation Type 2-D Radial 

Separation (m) 

Bearing (degrees) Altitude Separation 

(m) 

Line 50 0 0 

V 50 45 0 

Above 0 0 50 

Wing 50 90 0 
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Figure 21 - Predefined Formations 

Once the ENU coordinates of the desired trail aircraft’s waypoint position are 

calculated based on the lead aircraft’s position and the desired formation data, it is simply 

a matter of converting back to LLA coordinates and inserting the waypoint by 

broadcasting it to the trail’s Piccolo II by way of the Ground Station.  The C++ source 

code for the formation flight controller developed can be found in Appendix B. 

 3.4.2 – Maintaining Desired Separation 

In waypoint control mode, the Piccolo II attempts to guide the aircraft to the next 

waypoint.  However, the waypoints are not “time-stamped”, so the autopilot flies the 

aircraft at a specified airspeed to the waypoint without regard to when it arrives at the 
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waypoint.  It quickly becomes obvious that a trail aircraft will have to be sent 

dynamically updating airspeed commands in order to maintain the desired separation. 

Designing a speed controller to maintain the desired separation between the lead 

and trail aircraft is itself a challenging problem that could be accomplished many 

different ways, including using linear models and linear control theory or using nonlinear 

models and nonlinear control theory.  However, it is essential to account for the 

communication delays that exist between the Ground Station, where the formation flight 

controller is implemented, and the airborne UASs.  Since the aircraft models available 

did not account for these delays, and since the constraints of time made it impossible to 

generate them during this thesis, an ad-hoc design method was used to develop a speed 

controller using the HITL simulation, which includes all of the communication delays.  

The speed controller developed changes the commanded airspeed of the trail aircraft 

based on its distance from the desired waypoint.  The relative position between the lead 

and trail aircraft is calculated by converting their GPS positional data to ENU 

coordinates.  The trail aircraft’s position is then compared to the position of the desired 

waypoint based on formation information.  Based on the distance between the trail 

aircraft and its desired position, a new airspeed, based off of the lead’s airspeed, is 

commanded.  More separation between the trail and its desired waypoint means a higher 

target airspeed is sent to the trail.  Without any communication delay, the trail aircraft 

could ideally fly nearly on top of the updating waypoint.  However, this is impossible 

because there is a significant time delay between sending a waypoint command to the 

trail aircraft and the aircraft actually maneuvering towards that waypoint.  This time 
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delay required the formation flight controller to incorporate a built-in separation, which 

could not be surpassed. 

The first method for tuning these commanded airspeeds was basically guess-and-

check.  This method will be referred to in this thesis as the “stop-and-go” method of gain 

adjustment, named so because it has jumps in commanded airspeeds as the trail crosses 

certain separation thresholds.  Hundreds of simulations were run with the lead aircraft 

flying at 16m/s while visualizing both aircraft to fine-tune the ratios of commanded 

airspeeds at particular distances.  Table 4 shows a breakdown of the separations and 

commanded airspeeds that were finally settled on.  The separation distances presented in 

this table were determined through a combination of a study of the single aircraft 

performance limits and countless formation flight simulations, and are valid for a lead 

airspeed of 16m/s.  The 40m separation defined in Table 4 as the lower limit of formation 

flight incorporates the time delay, the results of which will be shown in Chapter VI.  This 

built-in separation will have to be altered to account for varying a lead aircraft’s airspeed. 
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Table 4 – Stop-and-Go Trail Airspeed Adjustment 

 

It must be noted that a trail aircraft could be significantly off its desired bearing to 

the lead aircraft; so a check was inserted to correct for that, as shown in the second 

column of Table 4.  Figure 22 shows the necessity for this correction.  A trail aircraft 

whose formation called for it to fly directly behind the lead aircraft could fly alongside it 

in a wing formation instead, and it would be constantly increasing speed as long as it 

maintained more than enough separation.  It becomes necessary to slow the trail aircraft 

down if it gets too far off-bearing.  Because this is most likely a problem in the scenarios 

when separation is less than 100m, only these scenarios will be adjusted.  It can be seen 

that the trail was commanded slower airspeeds when more than 20 degrees from its 

desired bearing.   

Separation Between Desired 

and Actual Position (m) 

Bearing Condition Ratio of Commanded Trail 

Airspeed to Lead Airspeed 

Separation > 300 None 1.33 

300 > Separation > 100 None 1.22 

100 > Separation > 50 Deviation>20° 0.84 

100 > Separation > 50 Deviation<20° 1.09 

50 > Separation > 40 Deviation>20° 0.84 

50 > Separation > 40 Deviation<20° 1.048 

40 > Separation > 0 None 0.77 
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Figure 22 - Formation Controller Bearing Condition 

This ad-hoc controller, while adequate at its task, could be greatly improved by 

fitting a regression curve to it.  Through a regression analysis, shown in Figure 23, it was 

determined that a logarithmic controller would be ideal for this particular system.  A 

logarithmic controller is capable of providing superior control during both close 

formation and when the separation is several orders of magnitude greater than desired.  

The particular control law developed is according to the following equation. 

[ 1 2ln( 1)]Trail LeadV V k k S= + +      (6)    

where 

 VLead = TAS of lead aircraft 

 Vtrail = Commanded TAS of trail aircraft 

 S = Distance between trail aircraft and desired waypoint 
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 k1 = Gain 1 > 0 

 k2 = Gain 2 > 0 

 

This equation was developed through a regression analysis and shifted slightly 

(the “S+1” term) to ensure a positive velocity command is always given.  This control 

law should provide superior performance because there are no “jumps” in airspeed across 

the separation conditions.   It also allows for the trail aircraft to match the lead’s airspeed 

exactly instead of continuously speeding up or slowing down to maintain proper 

separation.  This would greatly improve formation performance during steady level 

flight.  However, the formation performance will strongly depend on the tuning of the 

gains.  Low gains could lead to slow response, while high gains could cause the trail to 

overshoot its desired waypoint.  The gains must be tuned properly in order to improve 

formation performance. 

 
Figure 23 - Logarithmic Gain Fit 
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3.5 – Gain Tuning 

This method of adjusting airspeed for formation flight is still not ideal, and the 

gains, k1 and k2, need to be fine-tuned for adequate performance.  The gains were tuned 

by examining the telemetry and control data and through visualizing formation flight 

through Flight Gear.  The gains that were settled on were a k1 of 0.2 and k2 of 0.2.  

Obviously these gains will perform differently at different airspeeds.  When the lead’s 

airspeed is high, the trail will have a more difficult time staying in formation.  The effect 

of different airspeeds on formation capabilities will be studied in Chapter VI. 

3.6 – Airspeed Adjustment at Varying Lead Airspeeds 

For the most part, the methods of gain tuning described above were performed at 

a lead aircraft airspeed of 16m/s.  The reasoning behind this will be evident when the 

results of the single aircraft performance evaluation are presented in Chapter VI.  16m/s 

will prove to be an optimal airspeed for both formation flight and single aircraft flight in 

the prescribed flight test area.  However, the methods for extending the airspeed 

controller will be described here. 

The separations predefined in the “stop-and-go” trail airspeed adjustment are 

largely dependent on the lead aircraft’s airspeed.  The minimum separation distance 

should be defined by the following relationship: 

Smin = VL x td       (7) 

where  

Smin = Minimum Separation Distance 

 VL = Lead Aircraft Airspeed 
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td = Time Delay 
 

The time delay will be presented in Chapter VI, but the results of those 

simulations were necessary for tuning the formation flight controller.  The time delay 

ended up being around 4 seconds, which would indicate a minimum separation at 16m/s 

of 64m.  The initial minimum separation distance for a lead airspeed of 16m/s was set of 

64, but it was discovered through HITL simulation with visualization that the formations 

could be even tighter than that.  This could be due to a number of factors.  First, the time 

delay might not always be as high as 4 seconds.  Also, the trail aircraft rarely approaches 

the minimum separation.  As the results of the formation flight simulations will show in 

Chapter VI, having a minimum separation distance actually yields an average formation 

separation of around 64m for a lead airspeed of 16m/s, a separation nearly identical to 

what the time delay predicts.  To extend the minimum separation distances to other 

airspeeds, the separations will simply be multiplied by the ratio of 16m/s to the new lead 

airspeed.  For example, for a lead airspeed of 24m/s, the 0 < Separation < 40 condition 

would change to 0 < Separation x (16/24) < 40.  The same holds true for the logarithmic 

gain adjustment, whose equation will now be: 

[ 1 2ln( [16 / ] 1)]Trail Lead LeadV V k k S V= + +    (8) 

The results of using this method of gain adjustment will not be studied in this 

thesis because of time constraints.  The size of the time delay was not discovered until 

near the end of this thesis, and the necessity of using minimum separation distances as a 

function of time didn’t become apparent until the very end of this research.  Therefore, 

formation flight testing will be valid only for 16m/s, but the methods described above 
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should extend to varying airspeeds and provide better performance than the results shown 

in Chapter VI. 

3.6 – Chapter Conclusions 

The SDK provides a valuable tool for developing software to interact with the 

Piccolo II.  The development of a formation flight controller and the methods for 

inserting waypoints and adjusting airspeeds to achieve formation flight were described 

above, and the results of both HITL simulations and flight tests using this controller will 

be discussed in later chapters. 
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IV.  Hardware-in-the-Loop Simulation 

4.1 - Chapter Overview 

This chapter will detail the development of HITL simulations for both single and 

multiple aircraft.  The chosen flight plans and various operating conditions will be 

explained.  The single aircraft performance evaluation will be discussed first, followed by 

the multiple aircraft formation flight simulations.  The results of the simulations 

discussed in this Chapter are presented in Chapter VI. 

 

4.2 – Single Aircraft Simulations for Performance Evaluation 

4.2.1 – Waypoint Following 

Determining how closely an aircraft can track a series of closely spaced 

waypoints is the ultimate goal of this performance evaluation, because that will determine 

how tight a formation can be achieved using a waypoint-guided autopilot.  A series of 

conditions were selected to simulate various conditions the aircraft will face in actual 

flight tests.  A single aircraft was assigned a number of flight plans and they were flown 

at varying speeds and gain settings to study the effect of speed on waypoint following.  

The logs were then analyzed in MATLAB and a code was developed to evaluate any 

deviation from the aircraft’s desired waypoints. 

The flight plans used to study the aircraft’s deviation from desired position 

consisted of racetrack patterns of varying radii with a large number of closely spaced 

waypoints.  A smaller, tighter racetrack more closely approximates the actual flight test 
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area, while a larger, looser racetrack provides a glimpse at optimal performance in a 

flight test area where space is not an issue.  This may be useful for later research at AFIT. 

Another important factor in waypoint-following performance with the Piccolo II autopilot 

is the track convergence gain, defined by the manufacturer as the “track convergence 

parameter.”  Counter-intuitively, smaller track convergence parameters direct the aircraft 

to fly closer to the track between waypoints as possible.  Larger track convergence 

parameters, on the other hand, send the aircraft to the next waypoint without regard to the 

track connecting it to the previous waypoint.  Figure 24 illustrates the effect of the track 

convergence parameter.  Table 5 summarizes the various flight conditions that were 

studied in these waypoint-following simulations. 

 

Figure 24 - Effect of Track Convergence Parameter 

 
 
 
 
 



 

49 

Table 5 - Single Aircraft Waypoint-Following Simulations 
Simulation # Race Track Track Convergence Airspeed (m/s) 

1 Tight 250 16 

2 Tight 250 25 

3 Tight 50 25 

4 Loose 250 25 

5 Loose 250 16 

6 Loose 50 16 

 

4.2.2 – Turning Radius 

The commanded airspeed is obviously a big factor in determining how tight an 

aircraft is capable of turning.  The mathematics behind the turning radius of an aircraft 

are shown in the following equation (Rogers, 2001). 

2

tan( )
VTR

g φ
=       (9) 

where  

TR = turning radius 

V = airspeed 

g = gravity 

 φ = bank angle 

  

Therefore, the aircraft’s minimum turning radius occurs at its maximum bank 

angle, and will change proportionally with the square of the TAS.  Another important 
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thing to consider in studying the turning radius of an aircraft is the effect of turning on 

altitude.  An aircraft will often lose significant altitude during tight turns, because its lift 

vector is no longer balancing its weight, as shown in Figure 25.  The Piccolo II autopilot, 

however, includes compensators that maintain steady level flight when the gains are 

tuned properly; so maximum bank angle will most likely not be achieved.  This will be 

shown through the results of several simulations in Chapter VII.   

 

Figure 25 - Aircraft during Left Bank 

 

 

Figure 26 - Turning Radius Flight Plan 

A number of simulations were run studying the effect of airspeed on turning 

radius and altitude.  The flight path for these simulations consisted of just two waypoints, 

as shown in Figure 26.  The Piccolo II’s “preturn” setting was turned off for this 
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simulation, so the aircraft was directed to fly all the way to one waypoint before turning.  

The Piccolo II was commanded to hold a specific altitude while making the 180 degree 

turn.  Varying track convergence parameters were studied, as this would prove to be a 

major factor in achieving better performance.  The results of these tests will determine 

any limits on speed or turning radius that a lead aircraft might encounter during formation 

flight.  Table 6 summarizes the various conditions that were studied during the turning 

radius simulations. 

Table 6 - Single Aircraft Turning Radius Simulations 
Simulation # Track Convergence Airspeed (m/s) 

7 50 25 

8 250 25 

9 250 16 

10 50 16 

 

4.3 – Formation Flight Simulations 

4.3.1 – Time Delays 

There are a number of delays associated with a waypoint guided autopilot, 

especially during cooperative or formation flight.  The trail aircraft is basing its 

waypoints off the lead aircraft’s position, but the ground station only communicates with 

each airborne avionics box at 1Hz.  There are a number of steps in the formation flight 

process that introduce time delays, which are outlined as follows: 
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• Ground Station receives lead aircraft telemetry and control data and sends 

to Operator Interface 

• Formation flight controller reads telemetry and control data 

• Formation flight controller computes necessary waypoint position and 

control data for trail aircraft 

• Formation flight controller sends new commands to Operator Interface 

• Operator Interface sends data to Ground Station, which is put in queue to 

be sent to the trail aircraft 

• Trail aircraft receives commands 

• Avionics processes commands and operates servos accordingly 

 

It is obvious that this entire process will create a significant time delay between 

the lead aircraft performing a maneuver and the trail aircraft adjusting to stay in 

formation.  The 1Hz communication rate of the ground station is particularly limiting, 

because the trail aircraft may not receive a command until sometimes 2 seconds after a 

lead maneuver.  The magnitude of the overall delay will be determined through several 

simple simulations.  The lead aircraft will be manually commanded increases in altitude 

and speed in separate simulations, and the lag between the lead’s maneuver and the trail’s 

maneuver will be analyzed.  Table 7 summarizes the time delay simulations, and the 

results can be found in Chapter VI. 
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Table 7 - Formation Flight Time Delay Simulations 

Simulation # Altitude Change (m) Airspeed Change (m/s) 

11 +50 0 

12 0 +9 

 

4.3.2 – Varying Formations 

Various formations were hard-coded into the formation flight controller but will 

not be analyzed in simulation due to time constraints.  The only formation that will be 

analyzed in detail will be the “above” formation, as shown in Figure 21, with a trail 

aircraft flying 50m above its leader.  This will provide an easy way to determine the 

minimum formation separation possible because there is no radial separation between the 

lead aircraft and the trail aircraft’s commanded waypoint.  The only problem that could 

arise with different formations would be on hard turns directly into the trail aircraft’s 

flight path when the trail aircraft is flying in a “V” or “Wing” formation.  This can be 

avoided if the results of the time delay and minimum turning radius simulations are used 

to set a minimum formation separation. 

 4.3.3 – Varying Airspeeds 

The tightness of the formation will be largely dependent on airspeed.  Therefore, 

the bulk of the formation flight simulations will be flown in the same racetrack pattern 

that will be used during flight tests on Area B of WPAFB.  A single formation was flown 

in a much larger racetrack to determine the best formation performance the aircraft can 

hope to achieve in unlimited space.  Table 8 summarizes the formation flight simulations. 
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Table 8 - Formation Flight Simulations 
Simulation # Flight Plan Formation Track Convergence Airspeed (m/s) 

13 Large Racetrack Above 250 16 

14 Area B Plan Above 250 16 

15 Area B Plan Above 250 25 

16 Area B Plan Above 250 12 

17 Area B Plan Above 50 12 

18 Area B Plan Above 50 16 

 

4.4 – Chapter Conclusions 

Simulations were run to evaluate the performance of a single aircraft using the set 

of gains previously obtained at AFIT.  A number of simulations were run to determine 

the waypoint-following capabilities and minimum turning radius while holding altitude.  

These limitations were used in the formation flight controller to develop the gains for 

formation flight.  Formation flight was simulated using the HITL simulator and the 

formation flight controller.  The delay between lead and trail aircraft maneuvers during 

formation flight was studied.  Various airspeeds and gain settings were studied to 

determine the optimal settings for formation flight. 
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V. Flight Testing Procedures 

5.1 – Chapter Overview 

This chapter will describe the flight-testing of a single aircraft.  It will serve as a 

continuation of the initial discussion on flight test procedures begun in Chapter II and 

described in great detail in Jodeh’s thesis (Jodeh, 2006).  Multiple aircraft will not 

actually be flown, but a simulated lead aircraft will fly and a trail aircraft will attempt to 

stay in formation.  The setup of this simulated lead will be described, as well as the flight 

procedures and formation maneuvers of the aircraft.  Unfortunately, circumstances 

beyond the control of this author forced flight testing to be canceled.  It will be 

accomplished at a later date using the same procedures and maneuvers described in this 

thesis. 

 

5.2 – Testing Issues and Limitations 

 As has been described several times, the small flight test area severely limits the 

type of tests that can be performed.  Of the 10 simulations performed in the lab, only 

those performed on smaller flight plans with lower airspeeds will be attempted in 

experimental flight tests.  Only the flight tests deemed crucial to validating conclusions 

drawn from the HITL simulations will be flown. 

As discussed before, there are a number of issues regarding autonomous flight of 

multiple aircraft that become problematic.  The SRB, TRB, and CCB that convened for 

Jodeh’s thesis approved autonomous flight for a single aircraft, but the entire process will 

have to be repeated for multiple aircraft.  This is not possible in the time allotted for this 
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thesis; so a lead aircraft will be simulated and the trail aircraft will fly in a “virtual” 

formation, with the simulated lead. 

 

5.3 – Single Aircraft Flight Procedures and Maneuvers 

The procedures for single aircraft flight testing were described in Chapter 2.6.  

First, all of the conditions established by the SRB, TRB, and CCB were met.  The key 

members of the flight test team include the RC pilot, the operator manning the Operator 

Interface, a Safety Officer, and several spotters.  The RC pilot guides the aircraft through 

takeoff and climbs to altitude, at which point the controls are switched to autonomous 

flight.  The operator is capable of sending updated flight plans and gains in real-time to 

the autopilot.  The telemetry and control data is recorded by selecting at a higher rate 

during specific maneuvers, and switched to the lower rate the rest of the time. 

The most important flight testing maneuvers for the single aircraft research focus 

on two main issues:  waypoint-following and determining the turning radius of an 

aircraft.  The waypoint-following flight plan will consist of a number of closely spaced 

waypoints flown on the tight, Area B racetrack.  Several laps will be flown at varying 

track convergences at 16m/s airspeed.   

The turning-radius flight will be the same as Simulation #9 (Table 7), which 

consisted of an aircraft flying between two waypoints at 16m/s with a low track 

convergence parameter.  The higher track convergence parameter simulations will not be 

validated through flight testing because this test hopes to determine the minimum turning 

radius, which is clearly accomplished through low track convergence parameters. 
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5.4 – Simulated Lead Aircraft Setup 

As described above, multiple vehicles will not be flown at once.  Instead, a lead 

aircraft will be simulated, with the formation flight controller sending commands to the 

trail aircraft based on the lead’s simulated flight.  To simulate a lead aircraft, all the HITL 

hardware and software had to be brought into the field.  The simulator software and 

formation flight controller was set up on one laptop, and the Operator Interface was set 

up on another.  A local area network (LAN) was established between the two laptops.  

The Operator Interface was set to recognize the airborne aircraft as the “Pilot” so that in 

case of emergency the Piccolo manual controller would take control of the actual aircraft 

rather than the simulated one.  The simulation was then no different than running it in the 

lab as always, except that a single computer was being used to run a simulation and the 

formation flight controller rather than using separate computers for each task.   

 

5.5 – Multiple Aircraft Flight Procedures and Maneuvers 

The procedures for flight testing multiple vehicles are virtually identical to those 

for single aircraft flight testing.  The team will consist of the RC pilot, an operator 

manning the Operator Interface, a Safety Officer, several spotters, and another operator 

manning the formation flight controller interface.  The two operators will work together 

to send the aircraft on different flight plans and adjust the gains.  The formation flight 

controller operator will toggle the formation flight on and off, as well as command new 

formations to the trail aircraft.  He or she will also monitor the formation separations, to 

warn of any (simulated) collision. 
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  As described before, a trail aircraft will be commanded waypoints, airspeeds, 

and altitudes based on the separation between it and a simulated lead aircraft.  Two main 

flight plans will be used during this testing.  They will be the Area B racetrack and a 

straight line plan similar to the turning radius plan used during single aircraft flight 

testing.  The tests conducted using the straight line plan will demonstrate the formation 

time delays, similar to Simulations #11 and #12.  The tests on the Area B flight plan will 

be flown using both methods of gain adjustment, as well as various track convergence 

parameters for the lead aircraft.  All plans will be flown at 16 m/s, as that has been 

established as the optimal speed for this flight testing area. 

 

5.6 – Chapter Conclusions 

The flight testing procedures and maneuvers were described in this Chapter as a 

continuation of the overview presented in Chapter II.  The flight tests that will be 

conducted will validate those HITL simulations that show important results.  The results 

of the single aircraft flight testing will determine the capabilities of formation flight.  For 

multiple vehicles, the flight testing procedures and maneuvers outlined in this chapter 

validate the functionality of the formation flight algorithm.  The flight tests performed 

show the important limitations that need to be considered when defining formation 

separations and angles.  Experimental flight testing was not possible in the time allotted 

for this thesis, but all procedures will be followed by future researchers to validate the 

simulated results of this thesis.  Chapter VI will present the specific optimal formation 
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settings based on the goals of a particular flight, as well as the formation separations that 

could be achieved using the existing set of gains and hardware. 
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VI. Results and Analysis 

6.1 – Chapter Overview 

This chapter will discuss the results of all simulations and flight tests and compare 

the two.  It will provide reasoning behind gain tuning and other autopilot settings. 

6.2 – Single Aircraft HITL Simulation Results 

The results of the simulations described in Chapter IV are detailed below.  Figure 27 

through Figure 29 show the tight racetrack pattern flown at 16m/s with a track 

convergence of 250.  These racetrack patterns with many waypoints were flown to show 

the ability to track closely spaced waypoints, therefore the closest point of approach was 

calculated in MATLAB and the average deviation between the aircraft’s simulated 

position and desired waypoint position is shown in Figure 29.  Altitude and airspeed as 

functions of time are shown in Figure 28 to show that there is minimal altitude drop and 

variation of airspeed in this first simulation, which does not approach the limits of aircraft 

performance. 
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Figure 27 - Simulation #1 Flight Path 
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Figure 28 - Simulation #1 Altitude and Airspeed versus Time 
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Figure 29 - Simulation #1 2-D Deviation at Waypoints 

 
As Figure 29 shows, maximum deviation at a waypoint is just 22m.  Figure 30 

and Figure 31 show the path of a simulation flying a tight racetrack with track 

convergence 250 and 25m/s airspeed.   

A number of other racetrack patterns with varying track convergences, airspeeds, 

and track radii were flown and can be found in Appendix A.  Only those simulations that 

show performance limitations of the aircraft will be discussed in this section.   
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Figure 30 - Simulation #2 Flight Path 

 

4820 4840 4860 4880 4900 4920 4940 4960 4980 0 

15 

30 

45 

60 

75 

90 

105 

120 

135 

150 

Time

X
Y

-D
ev

ia
tio

n 
at

 W
ay

po
in

ts
 (m

) 

HITL Autopilot Simulation #2 : TAS(25m/s) Alt(400m),Convergence(250)

UAV Flight Path
Desired Waypoints and FlightPath 

 

Figure 31 - Simulation #2 2-D Deviation at Waypoints 
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Obviously these flight paths are not satisfactory.  The average 2-D deviation when 

the aircraft passes each waypoint is 49m, and reaches a maximum of 127m.  The track 

convergence parameter was changed from 250 to 50 and the same track was flown again 

at the same airspeed.  Figure 32 and Figure 33 show the results of this simulation. 
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Figure 32 - Simulation #3 Flight Path 
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Figure 33 - Simulation #3 2-D Deviation at Waypoints 
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The results of this simulation are much better with a track convergence of 50, but 

are still not quite satisfactory.  A maximum 2-D deviation at waypoints of 63m was 

achieved, and the average deviation was 16m.  This sets the minimum radial separation of 

formation flight at 63m for airspeeds near 25m/s.  This is the best performance that can 

hope to be achieved for such a high airspeed with the current gain settings. 

 Flying at such a high airspeed has proved through prior flight tests and 

simulations to yield unsatisfactory performance on this airframe; so most simulations will 

focus on lower airspeeds. 

 The performance capabilities at low airspeeds on a loose racetrack are also 

valuable to us, because they show the performance that might be achieved during mostly 

straight and level flight in a larger flight test area.  Figure 34 and Figure 35 show the 

flight path and 2-D deviations at waypoints for an aircraft flying at 16m/s around a larger 

racetrack pattern with a track convergence of 50. 
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Figure 34 - Simulation #6 Flight Path 
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Figure 35 - Simulation #6 2-D Deviation at Waypoints 
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This simulation achieved excellent results under these conditions, with a maximum 2-D 

deviation of just 4m.  Table 9 summarizes the performances achieved under the 6 

different waypoint-following simulations. 

Table 9 - Single Aircraft Waypoint-Following Simulation Results 
Simulation # , 

Racetrack, Airspeed 

(m/s), Convergence 

Average Altitude 

Deviation at 

Waypoints (m) 

Maximum Altitude 

Deviation at 

Waypoints (m) 

Average 2-D 

Deviation at 

Waypoints (m) 

Maximum 2-D 

Deviation at 

Waypoints (m) 

1, Tight, 16, 250 0.55 1.53 1.82 22.28 

2, Tight, 25, 250 0.55 1.10 48.89 127.03 

3, Tight, 25, 50 0.98 2.32 15.84 63.21 

4, Loose, 25, 250 0.70 1.43 39.04 80.80 

5, Loose, 16, 250 1.16 9.23 4.48 19.08 

6, Loose, 16, 50 0.55 0.94 1.52 3.69 

 

A number of trends can be seen in Table 9.  First, simulations with a track 

convergence of 50 performed far better than those run with a convergence of 250.  

Additionally, tighter racetracks were flown better by simulations run at a slower 

airspeeds.  The results of the turning radius simulations should verify the conclusion that 

slower airspeeds allow for better tracking.  Altitude deviation does not seem to be a 

problem for any of the simulations.  Simulation #5 had a higher maximum altitude 

deviation but it was an outlier, as shown in the relating graphs in Appendix A. 

The turning radius simulations did in fact yield results that verified the 

conclusions drawn from the waypoint following simulations.  Figure 36 and Figure 37 
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show the turning radius simulations flown at 16m/s and 25m/s, respectively.  Simulations 

with varying track convergences were also run and the results of those can be found in 

Appendix A. 
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Figure 36 - Simulation #10 Turning Radius 
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Figure 37 - Simulation #7 Turning Radius 
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 The simulation flown at 16m/s yielded a minimum turning radius of 

approximately 110m, while the simulation flown at 25m/s had a turning radius of 300m.  

It must be noted that these radii were achieved while maintaining constant altitude.  

Much tighter turns could be accomplished if holding altitude was not a necessary 

condition.  It was deemed necessary for this formation flight research, however, because 

the close formations that will be achieved do not allow for extreme maneuvers. 

 

6.3 – Single Aircraft Flight Test Results 

Time constraints and flight testing issues beyond the control of the author made 

flight testing impossible at this time.  Flight testing will instead be accomplished by later 

research at AFIT.  However, all simulation results should prove valid, as Jodeh’s thesis 

shows (Jodeh, 2006). 

6.4 – Formation Flight HITL Simulation Results 

The results of the most noteworthy formation flight simulations are presented 

here; the others can be found in Appendix A. 

Figure 38 and Figure 39 demonstrate probably the most important piece of 

information produced by this research – the time delay that exists when using a waypoint-

guided autopilot for formation flight control. 
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Figure 38 - Simulation #11 Time Delay: Airspeed Change 

 

Figure 39 – Simulation #12 Time Delay: Altitude Change 

  



 

73 

Clearly there is a significant delay between the lead aircraft beginning its 

maneuver and the trail aircraft following accordingly.  In both airspeed and altitude 

changes, the trail didn’t begin its maneuver until between four and six seconds later.  This 

will determine the precision of formations that can be achieved. 

 The next series of maneuvers consisted of varying airspeeds and track 

convergence parameters for the lead aircraft.  Figure 40 and Figure 41 demonstrate that 

for a tight flight plan, the track convergence parameter of the lead aircraft has little effect 

on the formation capabilities.  Because the aircraft is nearly at its minimum turning 

radius, the track convergence parameter does little to affect the path of the lead. 

Another noteworthy performance issue with formation flight lies in the differing 

goals associated with formation flight and regular waypoint-following.  The results of the 

single aircraft performance evaluation showed that lower track convergence parameters 

yielded significantly better performance in waypoint following, but this may actually 

have a negative effect on formation performance.  Lower track convergence means the 

lead aircraft will be making more extreme maneuvers, making it harder for the trail 

aircraft to follow the lead.  Therefore, a higher track convergence parameter of 250 

should be used if formation flight is the primary design driver.  If waypoint-following is 

more important, a lower track convergence parameter should be used. 
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Figure 40 - Simulation #18 – Low Track Convergence during Formation Flight 

 

Figure 41 - Simulation #14 – High Track Convergence during Formation Flight 
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Figure 42 shows that higher airspeeds degrade formation performance.  25m/s is 

simply too great an airspeed to fly in the area designed by WPAFB. 

 

Figure 42 - Simulation #15 – Too High Airspeed 

 Several simulations were flown at a low airspeed of 12m/s, which proved to be 

too slow for formation flight using this particular aircraft.  The aircraft stalls at airspeeds 

near 10m/s; so the autopilot is configured to not allow airspeeds below 12m/s.  If a trail 

aircraft is following a lead too closely and receives a command to slow down, it may 

already be at its minimum airspeed, so there is a risk of collision.  The formation flight 

algorithm corrects for this because it commands the trail aircraft to head to the waypoint 

that it has already passed, which makes the trail aircraft go into an immediate maximum 
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bank.  When the trail gets far enough away so that the constantly updating waypoint is 

ahead of it rather than behind it, it retakes its position in the formation.  Figure 43 shows 

that excellent formation flight was achieved during the majority of the flight, but that at 

two points the trail got too close.  Those points are evidenced by the major deviations 

from the lead’s flight path. 

 

 

Figure 43 - Simulation #16 – Too Low Airspeed 

 The above simulations merely present a two-dimensional representation of each 

aircraft’s flight path.  Now the precise formations achieved will be presented. 

Figure 44 and  
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Figure 45 shows the Area B flight plan being flown and the formations achieved 

using the stop-and-go method of airspeed adjustment.  Figure 44 shows the separation 

between the trail and the desired waypoint, not necessarily the lead aircraft.  However, 

because the “above” formation was studied during this simulation, the 2-D separation 

between the two aircraft and the 2-D separation between the trail aircraft and its desired 

waypoint are identical.   

Figure 46 and Figure 47 show the same flight plan as Simulation #22 but with the 

logarithmic gain discussed in Section 3.4.2.   
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Figure 44 - Simulation #22 – Stop-and-Go Gain 

 
Figure 45 - Simulation #22 Formation Characteristics 
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Figure 46 - Simulation #24 - Logarithmic Gain 

 
Figure 47 - Simulation #24 Formation Characteristics 
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Table 10 outlines the differences between using logarithmic gain and the 

supposedly rougher stop-and-go gain.  The numbers correspond to Simulations #22 and 

#24, shown above.  It must be noted that these simulations were run in the “Above” 

formation, where the trail aircraft’s desired waypoint stays 50m directly above the lead. 

 

 

Table 10 – Stop-and-Go versus Logarithmic Gain Adjustment 
 

 It is interesting to see that the two methods yielded virtually identical formation 

performances.  This was bound to occur, as the logarithmic gain method was determined 

through a regression analysis of the stop-and-go gain method.   

One thing that can be taken from Table 10 is that both methods have the same 

faults.  The average angle separations are particularly troublesome because they are so 

high.  This is due to the small flight testing area.  A larger test area would perform 

 Logarithmic Gain Stop-and-Go Gain 

Average 2-D Separation (m) 63.04 56.65 

Minimum 2-D Separation (m) 29.47 35.45 

Maximum 2-D Separation (m) 122.49 89.14 

Average Angle Separation (deg) 20.23 23.19 

Maximum Angle Separation (deg) 55.78 57.38 

Average Altitude Separation (m) 50.26 50.17 

Maximum Altitude Separation (m) 57.44 53.88 
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significantly better, as Figure 48 shows the results of simulation #19.  Figure 49 shows 

the flight plan used in simulation #19. 
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Figure 48 - Simulation #19 Formation Characteristics 

 

Figure 49 - Simulation #19 – Large Racetrack 
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 This larger test area was flown with relative ease, flying with identical altitude 

and 2-D separation numbers as the previous simulations, but with an average bearing of 

just 13º and a maximum angle separation of just 40º.  This shows the performance that 

could be achieved if the aircraft was restricted from making tight turns. 

 The important results from these formation flight simulations will now be 

summarized.  The small flight testing area led to inferior performance at higher (25m/s) 

airspeeds.  Therefore, formation flight should not be attempted at airspeeds higher than 

20m/s.  A higher track convergence parameter for the lead aircraft should be used when 

precision formation is desired, and a lower track convergence parameter should be used 

when waypoint-tracking is the primary goal.  The time delay simulations show that there 

will be a four to six second lag between the lead and trail aircraft maneuvers.  Therefore, 

formation precision will be limited to a separation of four to six times the airspeed.  For 

these simulations, that limitation requires a separation of 64-96m based on an airspeed of 

16m/s.  The results outlined in Table 10 show separations of 57 and 63m for each of the 

two methods, which confirms the time delay.  This time delay does not necessarily mean 

that tighter formations are not possible; it simply means that the maneuvers of the lead 

aircraft will have to take into account the delayed maneuvers of the trail aircraft.  For 

instance, Figure 50 depicts a lead aircraft in a right turn while a trail aircraft maintains 

too close of a separation in a ‘V’ formation.  Similar situations could occur for each of 

the predefined formations. 
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Figure 50 - Time Delay Collision 

 The problem depicted above is slightly alleviated due to the way the formation 

flight algorithm was designed.  The trail aircraft’s waypoint will initially swing the 

opposite direction to the lead aircraft’s turn because its waypoint is based off of the lead 

aircraft’s reference frame.  So in the event of a lead aircraft in a right turn, the following 

things will happen: 

• Lead aircraft begins a right turn. 

• Formation separation becomes too small and bearing becomes too large, 

which commands a lower airspeed to the trail. 

• Trail desired waypoint swings slightly left while lead aircraft goes ahead 

and passes in front of trail. 



 

85 

• Trail aircraft gets back within proper bearing range and speeds up, 

retaking ‘V’ position alongside the lead 

 

This is the process that should occur if proper formation separations are defined.  

With the proper formation separations and tuned gains, there is little chance of collision.   

Once the time delay issue has been addressed and much more precise formation 

flight is possible, the “swinging” of a waypoint during a lead aircraft maneuver becomes 

more of a problem than a solution.  A recent thesis was published at AFIT that looked 

into this problem as it related to automated aerial refueling (Ross, 2006). 

6.5 – Formation Flight Test Results 

As stated before, experimental flight testing was not possible at this time.  

However, simulation has verified that the formation flight algorithm is functional, and 

there is no reason why the results should not translate over to real-world flight testing.  

The important things to take from the simulations are the time delays involved in UAS 

operation and their relationship with the formation flight algorithm. 

6.6 – Chapter Conclusions 

The simulated single aircraft performance evaluation showed the limits that could 

be achieved during formation flight.  Those limits were applied to the formation flight 

algorithm, and various conditions were studied through simulation.  Unfortunately, the 

conclusions drawn from simulation could not be validated through experimental flight 

testing, but there is no reason to suggest that the results would be any different.   
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VII. Conclusions and Recommendations 

7.1 – Chapter Overview 

This chapter will describe the major accomplishments of this thesis, as well as 

make a number of suggestions for follow-on projects and recommendations for future 

work to improve the UAV test bed at AFIT. 

 

7.2 – Conclusions 

This research has accomplished several key objectives: 

• Implementation of the SDK into autonomous UAV flight 

• Establishment of procedures for characterizing guidance and control performance 

limits for varying conditions of a single UAV operating autonomously 

• Achievement of waypoint-guided formation flight using established performance 

limits to tune gains 

• Established procedures for further work using the SDK 

The single aircraft performance tests established limits for varying flying conditions, and 

were incorporated into the formation flight algorithm.  Unfortunately, flight testing was 

not possible during this thesis, so the simulations will be validated by the AFIT UAV 

research group at a later date. 
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7.3 – Recommendations 

The following recommendations cover aspects of formation flight and interaction 

with the avionics through the SDK.  Additionally, recommendations for future research 

projects are suggested. 

• Use optimization to fine-tune Piccolo II autopilot gains.  A guess-and-check 

method was used in a prior thesis and achieved satisfactory results, but since 

extensive flight testing has been done since then, optimization could tune gains 

based on the existing data. 

• Develop a user interface that is more capable of controlling the avionics.  The 

Win32 Application is not nearly as user-friendly as a GUI should be. 

• Formation Flight Recommendations  

o Optimize commands to UAS instead of only waypoint commands 

followed by airspeed and altitude adjustments.   

o Connect airborne avionics through wireless networks in onboard 

computers so communication through the ground station is unnecessary.  

The ground station communicates at only 1Hz, which is not fast enough to 

send constantly updating commands to achieve smooth, close formation 

flight. 

o Investigate further the effect of track convergence parameter on formation 

flight. 

• Flight Test Recommendations 

o Larger flight test area would be ideal, especially for formation flight.   
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Appendix A – Flight Test Results 

 

800 1000 1200 1400 1600 1800 2000

1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 
2600 
2700 

East (m)

N
or

th
 (m

) 
HITL Autopilot Simulation #1 : TAS(16m/s), Alt(400m)

UAV Flight Path
Desired Waypoints and FlightPath

 

Figure 51 - Simulation #1 – Airspeed 16m/s, Track Convergence 250 
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Figure 52 - Simulation #1 Airspeed 16m/s, Track Convergence 250 
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Figure 53 - Simulation #2 Airspeed 25m/s, Track Convergence 250 
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Figure 54 - Simulation #2 Airspeed 25m/s, Track Convergence 250 
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Figure 55 - Simulation #3 Airspeed 25m/s, Track Convergence 50  
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Figure 56 - Simulation #3 Airspeed 25m/s, Track Convergence 50 
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Figure 57 - Simulation #4 Airspeed 25m/s, Track Convergence 250 
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Figure 58 - Simulation #4 Airspeed 25m/s, Track Convergence 250 
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Figure 59 - Simulation #5 Airspeed 16m/s, Track Convergence 250 
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Figure 60 - Simulation #5 Airspeed 16m/s, Track Convergence 250 
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Figure 61 - Simulation #6 Airspeed 16m/s, Track Convergence 50 
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Figure 62 - Simulation #6 Airspeed 16m/s, Track Convergence 50 
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Figure 63 - Simulation #7 Airspeed 25m/s, Track Convergence 50 
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Figure 64 - Simulation #7 Airspeed 25m/s, Track Convergence 50 
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Figure 65 - Simulation #8 Airspeed 25m/s, Track Convergence 250 

5950 6000 6050 6100 6150 6200 6250
24

25

26

27

28

Time (s)

A
irs

pe
ed

 (m
/s

ec
)

5950 6000 6050 6100 6150 6200 6250
395

400

405

Time (s)

A
lti

tu
de

 (m
)

 

Figure 66 - Simulation #8 Airspeed 25m/s, Track Convergence 250 
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Figure 67 - Simulation #9 Airspeed 16m/s, Track Convergence 250 
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Figure 68 - Simulation #9 Airspeed 16m/s, Track Convergence 250 
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Figure 69 - Simulation #10 Airspeed 16m/s, Track Convergence 50 
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Figure 70 - Simulation #10 Airspeed 16m/s, Track Convergence 50 
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Figure 71 - Simulation #11 Time Delay: Airspeed Change 

 

Figure 72 - Simulation #12 Time Delay: Altitude Change 
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Figure 73 - Simulation #14 Airspeed 16m/s, Track Convergence 250 
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Figure 74 - Simulation #14 Airspeed 16m/s, Track Convergence 250 
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Figure 75 - Simulation #15 Airspeed 25m/s, Track Convergence 250 
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Figure 76 - Simulation #15 Airspeed 25m/s, Track Convergence 250 
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Figure 77 - Simulation #16 Airspeed 12m/s, Track Convergence 250 
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Figure 78 - Simulation #16 Airspeed 12m/s, Track Convergence 250 
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Figure 79 - Simulation #17 Airspeed 12m/s, Track Convergence 50 
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Figure 80 - Simulation #17 Airspeed 12m/s, Track Convergence 50 
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Figure 81 - Simulation #18 Airspeed 16m/s, Track Convergence 50 
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Figure 82 - Simulation #18 Airspeed 16m/s, Track Convergence 50 
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Figure 83 - Simulation #19 Airspeed 16m/s, Track Convergence 250 
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Figure 84 - Simulation #19 Airspeed 16m/s, Track Convergence 250 
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Figure 85 - Simulation #20 Airspeed 12m/s, Track Convergence 250 
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Figure 86 - Simulation #20 Airspeed 12m/s, Track Convergence 250 
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HITL Autopilot Simulation #21: TAS(25m/s), Alt(400m), Lead Convergence(250)
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Figure 87 - Simulation #21 Airspeed 25m/s, Track Convergence 250 
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Figure 88 - Simulation #21 Airspeed 25m/s, Track Convergence 250 
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HITL Autopilot Simulation #22: TAS(16m/s), Alt(400m), Lead Convergence(50), Preturn On
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Figure 89 - Simulation #22 Airspeed 16m/s, Track Convergence 50, Preturn On 
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Figure 90 - Simulation #22 Airspeed 16m/s, Track Convergence 50, Preturn On 
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HITL Autopilot Simulation #23: TAS(12m/s), Alt(400m), Lead Convergence(50), Preturn On
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Figure 91 - Simulation #23 Airspeed 12m/s, Track Convergence 50, Preturn On 
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Figure 92 - Simulation #23 Airspeed 12m/s, Track Convergence 50, Preturn On 
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HITL Autopilot Simulation #24: TAS(16m/s), Alt(330m), Lead Convergence(250), Preturn On
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Figure 93 - Simulation #24 Airspeed 16m/s, Logarithmic Gain 
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Appendix B – Formation Flight Controller 

 
/****************************************************************************** 
Test file for piccolo communication 
 
Programmed by: Pat McCarthy 
 
Date: 5 May, 2006 
 
lla2enu.h programmed by Randall Plate 
 
******************************************************************************/ 
#include<iostream.h> 
#include<fstream.h> 
#include<conio.h> 
#include<string> 
#include<stdio.h> 
#include<cstdlib> 
#include<windows.h> 
#include"lla2enu.h" 
#include"my_types.h" 
#include "CommManager.h" 
#include "Win32Serial.h" 
 
using namespace std; 
 
//function prototypes 
void displayData(int i, int NumNets); 
void InsertWaypoint(double lat, double lon, double alt, int i, int next); 
void CalcRelativePosition(int NumNets); 
void FormationFlight(int i, int NumNets); 
void ChangeFormation(char key); 
void displayTelemetry(int i); 
void displayChangeInFormation(int i); 
void displayFormation(int i, int NumNets); 
void DoStuff(int numObst, int NumNets); 
void DefineFormations(); 
void Calc_Dist_to_Waypoint(int i, float wpNorth, float wpEast, float alt); 
void AirspeedAdjust(int i); 
void ManualChange(); 
//Basic Variables/Arrays vital to all parts of code 
CCommManager* m_pComm = NULL; //initialize Communications Manager m_pComm 
Queue_t* pQ = NULL;    //used to see if autopilot packets exist 
ENUCoord PosENU;    //East-North-Up coordinate used for telemetry and 
avoiding obstacles 
ENUCoord PosENU_form;   //East-North-Up coordinate used for formation 
flight...(could be combined with PosENU) 
telemetry current_telemetry[10];//holds decoded telemetry packet data for up to 10 networks 
control current_control[10]; //holds decoded control packet data for up to 10 networks 
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//Basepoint to use for all ENU coordinates...calculated by doing lla2ecef transformation in matlab at a 
lat/lon/alt near AFIT 
//Note that the further the basepoint from actual position, the more error 
const double Base_X = 503000; 
const double Base_Y = -4884700; 
const double Base_Z = 4057800; 
 
 
 
FILE * pFile1; 
FILE * pFile2; 
FILE * pFile3; 
 
//Obstacle Variables/Arrays 
int distances[10][10];   //holds distances from all networks to all obstacles 
double alpha[10] = {0};   //angles between network and obstacles 
double theta[10] = {0};   //angles between heading and obstacles...used in collision 
detection 
location obstacle[10];   //hold obstacle data- allows for 10 different obstacles 
bool waypoint1 = false;   //flag to recognize when obstacle has been avoided 
const int Crit_Dist = 300;  //critical distance before avoiding obstacle (meters) 
const int Crit_Angle = 45;   //critical angle before avoiding obstacle (degrees) 
 
//Formation Variables/Arrays 
float reverse_cartesian[10]; 
float cartesian_heading[10]; 
formation my_formation[4];  //global array to hold predefined formation information- 
allows for 4 predefined formations 
int current_form=2;    //starts formation in copositional formation 
double formation_dist[10][10]; //holds distances between all networks to one another 
double formation_angles[10][10];//holds angles between each network and lead network's heading (angle 
off the lead's tail) 
double formation_alt[10][10]; //holds formation altitude separation 
double dist_to_wpoint[10];  //holds distance to desired formation waypoint 
UInt8 Waypoint_cmd[10];   //holds the index of the waypoint each network is currently 
heading towards - up to 10 networks 
Waypoint_t location_leader;  //holds waypoint information (Lat, Lon, Alt) of leader's 
current position 
int toggle_formation=0;   //toggles formation on and off 
int counter=0;     //sets arbitrary counter to periodically insert 
formation waypoints, adjust airspeed, etc 
int data=96;     //toggles which display you want to see...arbitrary 
starting value 
int leadID=562;     //starting lead aircraft -> Piccolo ID = 562 
int trailID=565;    //starting trail aircraft -> Piccolo ID = 565 
int oldleadID;     //temporary variable used to switch lead/trail 
double wpEast, wpNorth, head, alpha2, alt; //temporary variables to calculate desired waypoint position 
before InsertWaypoint inserts them 
int lead_index;     //global value stores lead network's ID...avoids 
having to call m_pCommGetIndexFromID(leadID) all the time 
int trail_index;    //global value stores trail network's ID...avoids having to call 
m_pCommGetIndexFromID(trailID) all the time 
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//clears the screen 
void clrscr() { 
  HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE); 
  COORD coord = {0, 0}; 
  DWORD count; 
  CONSOLE_SCREEN_BUFFER_INFO csbi; 
  GetConsoleScreenBufferInfo(hStdOut, &csbi); 
  FillConsoleOutputCharacter(hStdOut, ' ', csbi.dwSize.X * csbi.dwSize.Y, coord, &count); 
  SetConsoleCursorPosition(hStdOut, coord); 
} 
//clears the screen 
 
 
//As defined in "index.html": from SDK documentation 
void NewNetwork(UInt16 NetworkID, void* Parameter) { 
 
}         
//Needed to Initialize Networks 
 
 
//Looks for and gleans data from an autopilot packet sent from a network 
void LookForAutopilotData(QType* pQ, int whosData) 
{ 
    static AutopilotPkt_t APPkts[10];  
 static AutopilotCmd_t Cmd[10]; 
 double mins, hours; 
 UInt32 i, NumNets; 
 SInt32 ID; 
 
 //look at how many networks m_pComm can see 
 NumNets = m_pComm->GetNumNets(); 
 lead_index=m_pComm->GetIndexFromID(leadID); 
 trail_index=m_pComm->GetIndexFromID(trailID); 
  
  
 for(i = 0; i < NumNets; i++) 
 { 
  // Don't display past 10 networks since we didn't include the space 
  if(i >= 10) break; 
 
  ID = m_pComm->GetIDFromIndex(i); 
 
  // Don't try to decode ground station packets 
  //if(ID < 1) continue; 
 
  //   Get the pointer to the receive queue for the autopilot stream.  Note 
  //   this pointer will persist as long as the network structure exists, 
  //   so we could just save the pointer and then we wouldn't have the 
  //   overhead of repeatedly calling this function 
  pQ = m_pComm->GetStreamRxBuffer((UInt16)ID, AUTOPILOT_STREAM); 
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  if(!pQ) continue; 
 
  // Now check to see if a packet exists.  Note!!! The raw packet 
  //   structure MUST persist between calls, and it MUST be unique to this 
  //   network. 
  if(LookForAutopilotPacket(pQ, &(APPkts[i]))) 
  {    
   switch(APPkts[i].PktType) 
   { 
    case TELEMETRY: 
     UserData_t telemData;  
     DecodeTelemetryPacket(&(APPkts[i]), &(telemData)); 
     //update telemtry struct 
      
     current_telemetry[i].Longitude = telemData.GPS.Longitude * 
180.0 / 3.1415926; 
     current_telemetry[i].Latitude = telemData.GPS.Latitude * 
180.0 / 3.1415926; 
     current_telemetry[i].Altitude = telemData.GPS.Altitude; 
     current_telemetry[i].Velocity = telemData.GPS.Speed; 
      
     //convert lla data to enu 
     PosENU.lla2enu(current_telemetry[i].Latitude 
*3.1415926/180, 
           current_telemetry[i].Longitude 
*3.1415926/180, 
           current_telemetry[i].Altitude, 
           Base_X, Base_Y, Base_Z); 
 
     current_telemetry[i].East = PosENU.GetEast(); 
     current_telemetry[i].North = PosENU.GetNorth(); 
     current_telemetry[i].Up = PosENU.GetUp();  
     current_telemetry[i].Hours = telemData.GPS.hours; 
     current_telemetry[i].Minutes = telemData.GPS.minutes; 
     current_telemetry[i].Seconds = telemData.GPS.seconds; 
      
     //Getting leader's telemetry 
     if(i==lead_index) { 
      location_leader.Lat=current_telemetry[i].Latitude; 
      location_leader.Alt=current_telemetry[i].Altitude; 
      location_leader.Lon=current_telemetry[i].Longitude; 
     } 
      
     
     //display the data 
     fprintf(pFile1,"\n  %i    %7i    %f      %f      %f",leadID, 
current_telemetry[lead_index].Time, current_telemetry[lead_index].Latitude, 
current_telemetry[lead_index].Longitude, current_telemetry[lead_index].Altitude); 
     fprintf(pFile2,"\n  %i    %7i    %f      %f      %f",trailID, 
current_telemetry[trail_index].Time, current_telemetry[trail_index].Latitude, 
current_telemetry[trail_index].Longitude, current_telemetry[trail_index].Altitude); 
     fprintf(pFile3,"\n%7u    %7u     %7f      %7f       %7f", 
current_telemetry[lead_index].Time, current_telemetry[trail_index].Time, 
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formation_dist[trail_index][lead_index], formation_angles[trail_index][lead_index], 
formation_alt[trail_index][lead_index]); 
     displayData(whosData, NumNets); 
     break; 
    case CONTROL_DATA: 
     UserData_t controlData; 
     float gyroBias[3], controls[10]; 
     DecodeControlDataPacket(&(APPkts[i]), &(controlData), 
gyroBias, controls); 
     //update telemetry struct 
     current_telemetry[i].Time = controlData.SystemTime; 
     current_control[i].BankAngle = controlData.Euler[0] * 
180/3.1415926; 
     current_control[i].Heading = controlData.Euler[2] * 
180/3.1415926; 
      //Euler[0] = Roll, Euler[1] = Pitch, Euler[2] = Yaw 
     current_control[i].RollRate = controlData.Gyro[0] * 
180/3.1415926; 
     current_control[i].PitchRate = controlData.Gyro[1] * 
180/3.1415926; 
     current_control[i].YawRate = controlData.Gyro[2] * 
180/3.1415926; 
     current_control[i].AirSpeed = controlData.TAS; 
     current_control[i].Pdynamic = controlData.Pdynamic; 
      
     current_control[i].Aileron = controls[0] * 180/3.1415926; 
     current_control[i].Elevator = controls[1] * 180/3.1415926; 
     current_control[i].Throttle = controls[2]; 
     current_control[i].Rudder = controls[3] * 180/3.1415926; 
     //convert GPS seconds into hours, minutes, and seconds 
     hours = controlData.SystemTime / 3600000.0; 
     current_control[i].Hours = hours; 
     mins = (hours - (double)current_control[i].Hours) * 60; 
     current_control[i].Minutes = mins; 
     current_control[i].Seconds = (mins - 
(double)current_control[i].Minutes) * 60; 
     displayData(whosData, NumNets); 
     break; 
    case WAYPOINT: //This can give you the individual waypoint 
information 
     break; 
    case WAYPOINT_LIST:  
     break; 
    case TRACK:  
     break; 
    case AUTOPILOT_COMMAND:  
     AutopilotCmd_t Cmd[3]; 
     Waypoint_cmd[i] = 
DecodeAutopilotControlPacket(&(APPkts[i]), &Cmd[i]); 
     //This returns Waypoint_cmd[i] as the waypoint the Piccolo is 
currently heading towards 
     displayData(whosData, NumNets); 
     break;     
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   } 
  } 
 }   
} 
// LookForAutopilotData 
 
 
//Displays Instructions 
void displayData(int i, int NumNets) { 
 clrscr(); 
 printf("Instructions"); 
 printf("\nPress a Number to see Individual Piccolo Data (1,2...)"); 
 printf("\nPress 'T' to see Telemetry Data"); 
 printf("\nPress 'F' to see Formation Data"); 
 printf("\nPress 'C' to Change Formation Characteristics"); 
 printf("\nPress 'M' to Manually Change Lead's Commands"); 
 printf("\nPress 'X' to Exit"); 
 
 printf("\nCurrent Piccolo ID = %i", m_pComm->GetIDFromIndex(i));   
 printf("\nCurrently heading towards Waypoint: %i", Waypoint_cmd[i]); 
  
 if(data==0) 
  displayTelemetry(i); 
 if(data==1) 
  displayFormation(i, NumNets); 
 if(data==2) 
  displayChangeInFormation(i); 
 if(data==3) 
  ManualChange(); 
 else; 
} 
//displayData 
 
 
//Displays Network Telemetry and Control Information 
void displayTelemetry(int i) { 
 printf("\nSystem Time: %u", current_telemetry[i].Time); 
 printf("\nTelemetry Packet Data  : %i", current_telemetry[i].Hours); 
 printf(":%i", current_telemetry[i].Minutes); 
 printf(":%f", current_telemetry[i].Seconds); 
 printf("\nLatitude (deg)         : %f", current_telemetry[i].Latitude); 
 printf("  East: %f", current_telemetry[i].East); 
 printf("\nLongitude (deg)        : %f", current_telemetry[i].Longitude); 
 printf("  North: %f", current_telemetry[i].North); 
 printf("\nAltitude (m)           : %f", current_telemetry[i].Altitude); 
 printf("  Up: %f", current_telemetry[i].Up); 
 printf("\nGround Speed           : %f", current_telemetry[i].Velocity); 
 printf("\nAir Speed              : %f", current_control[i].AirSpeed); 
 //print current control data 
 printf("\n\nControl Packet Data  : %i", current_control[i].Hours); 
 printf(":%i", current_control[i].Minutes); 
 printf(":%f", current_control[i].Seconds); 
 printf("\nHeading                : %f", current_control[i].Heading); 
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 printf("  Aileron (deg)     : %f", current_control[i].Aileron); 
 printf("\nBank Angle             : %f", current_control[i].BankAngle); 
 printf("  Elevator (deg)    : %f", current_control[i].Elevator); 
 printf("\nRoll Rate              : %f", current_control[i].RollRate); 
 printf("  Throttle (percent): %f", current_control[i].Throttle*100); 
 printf("\nPitch Rate             : %f", current_control[i].PitchRate); 
 printf("  Rudder (deg)      : %f", current_control[i].Rudder); 
 printf("\nYaw Rate               : %f", current_control[i].YawRate); 
 //print current surface deflections 
} 
//displayTelemetry  
  
//Displays Formation Characteristics 
void displayFormation(int i, int NumNets) { 
  //Prints Formation Data 
  int m=m_pComm->GetIndexFromID(leadID); 
  printf("\nCurrent Lead Aircraft: %i",leadID); 
  printf("\n\nAngle between heading and obstacle: %f", theta[i]); 
  printf("\nNumber of Piccolo's seen: %i", NumNets-1); 
  printf("\nRadial Separation from Leader: %f",formation_dist[i][m]); 
  printf("\nAngle Separation from Leader: %f", formation_angles[i][m]); 
  printf("\nAltitude Separation from Leader: %f", formation_alt[i][m]); 
  printf("\nRatio of Trail Airspeed to Lead Airspeed: %f", 
current_control[trail_index].AirSpeed/current_control[lead_index].AirSpeed); 
  if(i != m) { 
   printf("\nDistance Behind Desired Waypoint: %f",dist_to_wpoint[i]); 
  } 
  //only print distance to waypoint for trailing aircraft 
} 
//displayFormation 
 
 
//Displays Changing Formation Instructions and Calls ChangeFormation 
void displayChangeInFormation(int i) { 
   
  printf("\nPress 'S' to maintain Formation but switch Leader"); 
  printf("\nPress 'L' for Line Formation"); 
  printf("\nPress 'V' for V Formation"); 
  printf("\nPress 'D' for Above Formation"); 
  printf("\nPress 'W' for 90 Degree Wing Formation"); 
  printf("\nPress 'O' to turn Formation Flight Off"); 
   
  char key=getch(); 
  ChangeFormation(key); 
  printf("\nPress any key to continue..."); 
  getch(); 
  data=90;  
} 
//displayChangeInFormation 
 
 
 
void ManualChange() { 
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  printf("\nPress 'S' to Speed Up"); 
  printf("\nPress 'D' to Slow Down"); 
  printf("\nPress 'H' to Command Higher Altitude (50 m)"); 
  printf("\nPress 'L' to Command Lower Altitude (50 m)"); 
  printf("\nPress 'T' to Track New Waypoint By Index"); 
    
  static AutopilotLoopCmd_t altCom; 
  static AutopilotLoopCmd_t speedCom; 
  float cmd_speed; 
  char key=getch(); 
  switch(key) { 
   case 's': 
    cmd_speed=current_control[lead_index].Pdynamic*1.1; 
    speedCom.Loop = 0;  //command a dynamic pressure 
    speedCom.Control = 1; //turn ap_loop_cmd on 
    speedCom.Value = (cmd_speed);//assign the commanded value 
    m_pComm->SendAutopilotLoopControlPacket(leadID, 
&(speedCom));//send the command 
    break; 
   case 'd': 
    cmd_speed=current_control[lead_index].Pdynamic*0.9; 
    speedCom.Loop = 0;  //command a dynamic pressure 
    speedCom.Control = 1; //turn ap_loop_cmd on 
    speedCom.Value = (cmd_speed);//assign the commanded value 
    m_pComm->SendAutopilotLoopControlPacket(leadID, 
&(speedCom));//send the command 
    break; 
   case 'h': 
    altCom.Loop=1; 
    altCom.Control=1; 
    altCom.Value=current_telemetry[lead_index].Altitude+50; 
    m_pComm->SendAutopilotLoopControlPacket(leadID, 
&(altCom));//send the command 
    break; 
   case 'l': 
    altCom.Loop=1; 
    altCom.Control=1; 
    altCom.Value=current_telemetry[lead_index].Altitude-50; 
    m_pComm->SendAutopilotLoopControlPacket(leadID, 
&(altCom));//send the command 
    break; 
   case 't': 
    printf("\nEnter New Waypoint Command"); 
    int track=getch(); 
    m_pComm->SendTrackCommandPacket(leadID, track, true); //send 
command to head to new waypoint 
    break; 
  } 
  printf("\nPress any key to continue..."); 
  getch(); 
  data=90;  
} 
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//Changes Formation Characteristics 
void ChangeFormation(char key) { 
 switch(key) { 
  case 'l': 
   current_form=0; 
   printf("\n\nFormation Changed to Line"); 
   break; 
  case 'v': 
   current_form=1; 
   printf("\n\nFormation Changed to V"); 
   break; 
  case 'd': 
   printf("\n\nFormation Changed to Above"); 
   current_form=2; 
   break; 
  case 's': 
   oldleadID=leadID; 
   leadID=trailID; 
   trailID=oldleadID; 
   printf("\n\nLead Aircraft Switched to: %i",leadID); 
   printf("\nTrail Aircraft is now: %i",trailID); 
  case 'w': 
   current_form=3; 
   printf("\n\nFormation Changed to 90 Degree Wing Formation"); 
   break; 
  case 'o': 
   toggle_formation++; 
   printf("\n\nFormation Toggled"); 
   break; 
  default: 
   break; 
 } 
} 
//ChangeFormation 
 
 
 
//Defines Predetermined Formations 
void DefineFormations() { 
  
 //Formation 0 is Line 
 my_formation[0].radial_sep=30; 
 my_formation[0].z_sep=0; 
 my_formation[0].bearing=0; 
 
 //Formation 1 is V 
 my_formation[1].radial_sep=30; 
 my_formation[1].z_sep=0; 
 my_formation[1].bearing=45; 
  
 //Formation 2 is Concurrent Position (SIMULATION ONLY!!!) 
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 my_formation[2].radial_sep=0; 
 my_formation[2].z_sep=50; 
 my_formation[2].bearing=0; 
 
 //Formation 3 is 90 degree Wing Position 
 my_formation[3].radial_sep=30; 
 my_formation[3].z_sep=0; 
 my_formation[3].bearing=90; 
 
  
} 
//DefineFormations 
 
 
 
//Calculates distance to desired waypoint 
void Calc_Dist_to_Waypoint(int i, float wpNorth, float wpEast, float alt) {//replace these with wpEast 
 dist_to_wpoint[i]=sqrt((current_telemetry[i].North-wpNorth)*(current_telemetry[i].North-
wpNorth)+(current_telemetry[i].East-wpEast)*(current_telemetry[i].East-wpEast)); 
} 
//Calc_Dist_to_Waypoint 
 
//Avoids Obstacles, Formation Flight, etc 
void DoStuff(int numObst, int NumNets) 
{ 
 for(int i=0; i<NumNets; i++) { 
  // Don't display past 10 networks since we didn't include the space 
  if(i >= 10) break; 
   
  //AvoidObstacles(numObst,i); 
  if(toggle_formation %2 ==0) { 
   FormationFlight(i, NumNets); 
  }//FormationFlight can be toggled on and off 
 } 
} 
//DoStuff 
 
 
 
 
//Initiates formation flight if it sees more than 2 networks and toggle_formation is turned on 
void FormationFlight(int i, int NumNets) { 
 static AutopilotLoopCmd_t altCom; 
 int ID=m_pComm->GetIDFromIndex(i); 
 bool too_close=false; 
 counter=counter+1; 
 if(ID== trailID && counter % 50 == 0) { //send new waypoint to trail aircraft periodically 
  float wpEast, wpNorth, head, alpha2, alt; 
  CalcRelativePosition(NumNets); 
  head=current_control[lead_index].Heading; 
  alpha2 = 90 - head; 
   
  alt=current_telemetry[lead_index].Up+my_formation[current_form].z_sep; 
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 wpNorth=current_telemetry[lead_index].North+my_formation[current_form].radial_sep*sin((reve
rse_cartesian[lead_index]-my_formation[current_form].bearing)*3.14159265359/180); 
 
 wpEast=current_telemetry[lead_index].East+my_formation[current_form].radial_sep*cos((revers
e_cartesian[lead_index]-my_formation[current_form].bearing)*3.14159265359/180); 
  PosENU_form.enu2lla(wpEast, wpNorth, alt, Base_X, Base_Y, Base_Z); 
   
   
  altCom.Loop=1; 
  altCom.Control=1; 
 
 altCom.Value=current_telemetry[lead_index].Altitude+my_formation[current_form].z_sep; 
  m_pComm->SendAutopilotLoopControlPacket(trailID, &(altCom));//send the command 
   
 
  if(formation_dist[lead_index][trail_index]-my_formation[current_form].radial_sep>10) { 
//if you're more than 25 meters of the desired formation position, insert waypoint 
            
             
//exactly at that desired formation position 
   InsertWaypoint(PosENU_form.GetLat(), 
PosENU_form.GetLong(),PosENU_form.GetAlt(), trail_index, 0); 
  } 
  else m_pComm->SendTrackCommandPacket(trailID, Waypoint_cmd[trail_index], true);
 //send command to head to new waypoint  
   //InsertWaypoint(current_telemetry[lead_index].Latitude, 
current_telemetry[lead_index].Longitude, current_telemetry[lead_index].Altitude, trail_index, 0); 
            
             
//if you're too close to desired formation position, insert waypoint at the lead's aircraft 
            
             
//Piccolo will also be slowing down simultaneously  
  Calc_Dist_to_Waypoint(i,wpNorth, wpEast, alt); 
  if(counter%20==0) //Adjust trail AC airspeed periodically 
   AirspeedAdjust(i); 
 
 } 
} 
//FormationFlight 
 
 
//Adjusts trail AC airspeed using extremely rough proportional control (further separation => greater trail 
airspeed) 
void AirspeedAdjust(int i) {  
 float cmd_speed, speed_ratio; 
 static AutopilotLoopCmd_t speedCom; 
 /* 
 
 //This is using the "stop and go" method of gain tuning based on formation separation 
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 if(dist_to_wpoint[i]- my_formation[current_form].radial_sep> 300 && 
formation_dist[lead_index][trail_index] >= my_formation[current_form].radial_sep) { //Need to add 
something about closing rate 
  cmd_speed=current_control[lead_index].Pdynamic*1.75; 
  speedCom.Loop = 0;  //command a dynamic pressure 
  speedCom.Control = 1; //turn ap_loop_cmd on 
  speedCom.Value = (cmd_speed);//assign the commanded value 
  m_pComm->SendAutopilotLoopControlPacket(trailID, &(speedCom));//send the 
command 
 } 
 //this isn't right yet?? or is it??? 
 if(dist_to_wpoint[i]-my_formation[current_form].radial_sep > 100 && dist_to_wpoint[i]-
my_formation[current_form].radial_sep < 300 && formation_dist[lead_index][trail_index] >= 
my_formation[current_form].radial_sep) { 
  cmd_speed=current_control[lead_index].Pdynamic*1.5; 
  speedCom.Loop = 0;  //command a dynamic pressure 
  speedCom.Control = 1; //turn ap_loop_cmd on 
  speedCom.Value = (cmd_speed);//assign the commanded value 
  m_pComm->SendAutopilotLoopControlPacket(trailID, &(speedCom));//send the 
command 
 } 
 if(dist_to_wpoint[i]-my_formation[current_form].radial_sep >50 && dist_to_wpoint[i]-
my_formation[current_form].radial_sep < 100 && formation_dist[lead_index][trail_index] >= 
my_formation[current_form].radial_sep) { 
  if(fabs(formation_angles[trail_index][lead_index])-
my_formation[current_form].bearing>20) 
   cmd_speed=current_control[lead_index].Pdynamic*0.7; 
  if(fabs(formation_angles[trail_index][lead_index])-
my_formation[current_form].bearing<20) 
   cmd_speed=current_control[lead_index].Pdynamic*1.2; 
  else cmd_speed=current_control[lead_index].Pdynamic*1.2; 
  //Must also be within proper angle to increase speed 
 
  speedCom.Loop = 0;  //command a dynamic pressure 
  speedCom.Control = 1; //turn ap_loop_cmd on 
  speedCom.Value = (cmd_speed);//assign the commanded value 
  m_pComm->SendAutopilotLoopControlPacket(trailID, &(speedCom));//send the 
command 
 } 
 if(dist_to_wpoint[i]-my_formation[current_form].radial_sep >40 && dist_to_wpoint[i]-
my_formation[current_form].radial_sep < 50 && formation_dist[lead_index][trail_index] >= 
my_formation[current_form].radial_sep) { 
  if(fabs(formation_angles[trail_index][lead_index])-
my_formation[current_form].bearing>20) 
   cmd_speed=current_control[lead_index].Pdynamic*0.7; 
  if(fabs(formation_angles[trail_index][lead_index])-
my_formation[current_form].bearing<20) 
   cmd_speed=current_control[lead_index].Pdynamic*1.1; 
  else cmd_speed=current_control[lead_index].Pdynamic*1.1; 
  speedCom.Loop = 0;  //command a dynamic pressure 
  speedCom.Control = 1; //turn ap_loop_cmd on 
  speedCom.Value = (cmd_speed);//assign the commanded value 
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  m_pComm->SendAutopilotLoopControlPacket(trailID, &(speedCom));//send the 
command 
 } 
 if(dist_to_wpoint[i]-my_formation[current_form].radial_sep < 40 && 
formation_dist[lead_index][trail_index] >= my_formation[current_form].radial_sep) { 
  cmd_speed=current_control[lead_index].Pdynamic*0.6; 
  speedCom.Loop = 0;  //command a dynamic pressure 
  speedCom.Control = 1; //turn ap_loop_cmd on 
  speedCom.Value = (cmd_speed);//assign the commanded value 
  m_pComm->SendAutopilotLoopControlPacket(trailID, &(speedCom));//send the 
command 
 } 
 if(formation_dist[lead_index][trail_index] < my_formation[current_form].radial_sep) { 
  cmd_speed=current_control[lead_index].Pdynamic*0.56;  // slow to 3/4 speed if about to 
go ahead, and insert a new waypoint where the lead aircraft is (so no sudden changes) 
  speedCom.Loop = 0;  //command a dynamic pressure 
  speedCom.Control = 1; //turn ap_loop_cmd on 
  speedCom.Value = (cmd_speed);//assign the commanded value 
  m_pComm->SendAutopilotLoopControlPacket(trailID, &(speedCom));//send the 
command 
 } 
 else;*/ 
 
 // 
 //this is using the logarithmic gain, as opposed to the "stop and go" method above 
 // 
 
 if(fabs(formation_angles[trail_index][lead_index])-my_formation[current_form].bearing>20) 
  speed_ratio=0.8; 
 else speed_ratio=-0.16+0.3*log(dist_to_wpoint[i]+2.7182818); 
  
 //this is the actual gain equation - needs to be tuned better 
 
 cmd_speed=current_control[lead_index].Pdynamic*speed_ratio*speed_ratio; 
 speedCom.Loop=0; 
 speedCom.Control=1; 
 speedCom.Value=cmd_speed; 
 m_pComm->SendAutopilotLoopControlPacket(trailID, &(speedCom)); 
 //Need to add something about "If you're too far away AND the angle is within range..." 
} 
//AirspeedAdjust 
 
 
//Calculates relative position between all network's in ENU coordinates 
void CalcRelativePosition(int NumNets) { 
 //int NumNets=m_pComm->GetNumNets(); 
 double posn[10], pose[10], alt[10]; 
 float theta2; 
  
 for(int m=0;m<NumNets;m++) { 
  for(int n=0;n<NumNets;n++) {   
   if(m_pComm->GetIDFromIndex(m) > 560 && m_pComm-
>GetIDFromIndex(n)> 560) { 
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    //Should make it so it only switches actual Piccolo's 
    posn[n]=current_telemetry[n].North; 
    pose[n]=current_telemetry[n].East; 
    alt[n]=current_telemetry[n].Altitude; 
    formation_dist[m][n]=sqrt((posn[m]-posn[n])*(posn[m]-
posn[n])+(pose[m]-pose[n])*(pose[m]-pose[n])); 
    theta2=180/3.14159265359*atan2((posn[m]-posn[n]),(pose[m]-
pose[n])); 
    if(theta2<0) // atan2 returns 0_to_pi, 0_to_-pi 
     theta2=360+theta2; 
    //this returns the cartesian angle between the lead (n) and trail (m) 
aircraft 
     
    if(current_control[m].Heading>=0 && current_control[m].Heading 
<=90) 
     cartesian_heading[m]=90-current_control[m].Heading; 
    if(current_control[m].Heading>90 && current_control[m].Heading 
<=360) 
     cartesian_heading[m]=450-current_control[m].Heading; 
    //This gives the cartesian_heading of the aircraft m...should it be 'n'? 
     
    if(cartesian_heading[m]>=180) 
     reverse_cartesian[m]=cartesian_heading[m]-180; 
    else if(cartesian_heading[m]<180) 
     reverse_cartesian[m]=cartesian_heading[m]+180; 
    formation_angles[m][n]=reverse_cartesian[m]-theta2; 
    if(reverse_cartesian[m]-theta2>=180) 
     formation_angles[m][n]=reverse_cartesian[m]-theta2-360; 
    else if(reverse_cartesian[m]-theta2<= -180) 
     formation_angles[m][n]=reverse_cartesian[m]-theta2+360; 
    if(m==n) 
     formation_angles[m][n]=0; 
    formation_alt[m][n]=alt[m]-alt[n]; 
   } 
  } 
 } 
} 
//CalcRelativePosition 
 
 
//Sends waypoint packet to add waypoint to flight path at given location 
void InsertWaypoint(double lat, double lon, double alt, int whosData, int next) 
{ 
 UInt16 ID = m_pComm->GetIDFromIndex(whosData); 
 FPPoint_t WPInfo; 
     Waypoint_t location; 
 location.Lat = lat; 
 location.Lon = lon; 
 location.Alt = alt; 
 //location of new waypoint 
  
 WPInfo.Point = location;      //Assigns lat/lon/alt 
 WPInfo.Next = Waypoint_cmd[lead_index];    //Next waypoint index 
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 WPInfo.PreTurn = 1;      //1 for preturn on, 0 for off 
 WPInfo.Direction=0;      //1 for orbit right, 0 for left 
 
 //float OrbitRadius; //!< Radius of the orbit in meters 
 //UInt16 OrbitTime; //!< Seconds spent in the orbit 
 //WPInfo.OrbitRadius=50; 
 //WPInfo.OrbitTime=50;   //If you want a trail to orbit a lead aircraft, this could be turned on 
 
  
 m_pComm->SendWaypointPacket(ID, &(WPInfo), 99); //send new waypoint 
 m_pComm->SendTrackCommandPacket(ID, 99, true); //send command to head to new 
waypoint 
 
 // third parameter indicates if the vehicle should fly to the waypoint along the  
 //  preceding track segment, or if it should go directly to the waypoint, using its  
 // current position as the starting point. Set to TRUE to go directly to the waypoint.  
  
 
} 
//InsertWaypoint 
 
 
//Main Program 
int main() 
{ 
 int numObst=1; 
  
 //Open files that will store logged formation data 
 pFile1 = fopen ("Log1.txt","w"); 
 pFile2 = fopen ("Log2.txt","w"); 
 pFile3 = fopen ("Log3.txt","w"); 
  
  
 
 
 //create CCommManager object to communicate with Piccolo 
 // 129.92.5.112 is the IP address of the operator interface computer (Fly B) 
 m_pComm = new CCommManager(0, 57600, "129.92.5.112:2000", 0);  
 //m_pComm = new CCommManager(1,"",2000);   
 // This doesn't work, but this should be the way to run code on same computer 
 // as Operator Interface through Port 1 
 
 //print out error and exit if m_pComm doesn't connect 
 if(m_pComm->GetLastError() != 0){ 
  printf("%s", m_pComm->GetLastError()); 
  printf("\n"); 
  return 1;  
 } 
 
 //set up network callback function 
 m_pComm->SetNewNetworkCallBack(NewNetwork, m_pComm); 
 
 //define obstacles 
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 DefineObstacles(numObst); 
 DefineFormations(); 
 char keypress; 
 
 //periodic loop to service the communications endpoints 
 int i = 0, whosData = 0; 
  
 ///Write headers to files 
 fprintf(pFile1, "ID        TIME        LAT            LON            ALT"); 
 fprintf(pFile2, "ID        TIME        LAT            LON            ALT"); 
 fprintf(pFile3, "LeadTime   TrailTime   2DSeparation   AngleSeparation   AltSeparation"); 
 while(m_pComm && i == 0) 
 {  
  m_pComm->RunNetwork(); 
  int NumNets=m_pComm->GetNumNets(); 
  LookForAutopilotData(pQ, whosData); 
  DoStuff(numObst, NumNets); 
   
  if (kbhit()){ 
   keypress = getch();   //get commands via keypress 
   switch(keypress) 
   { 
    case 'x': 
     i = 1; 
     printf("\n"); 
     AutopilotLoopCmd_t altCom; 
     altCom.Loop=1; 
     altCom.Control=0;  //turn ap_loop_cmd back 
to off 
     altCom.Value=current_telemetry[lead_index].Altitude; 
     m_pComm->SendAutopilotLoopControlPacket(trailID, 
&(altCom));//send the command 
     AutopilotLoopCmd_t speedCom; 
     speedCom.Loop = 0;  //command a dynamic 
pressure 
     speedCom.Control = 0; //turn ap_loop_cmd back to off 
     speedCom.Value = (200);//assign the commanded value 
     m_pComm->SendAutopilotLoopControlPacket(trailID, 
&(speedCom));//send the command 
     /*This resets the commands to "auto".  There is sometimes an 
issue 
     with a Piccolo not working the next time after the code has 
been run. 
     Usually, on the commands page of the operator interface, 
changing commands to 
     Off then On will fix it.  Make sure you press 'x' to exit 
program and don't just close 
     the window, or else commands will not be reset to "auto" 
     */ 
      
     //close files 
     fclose (pFile1); 
     fclose (pFile2); 
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     fclose (pFile3); 
     break; 
    case 't':    //print telemetry data for selected 
network 
     data=0; 
     break; 
    case 'f':    //print formation data for selected 
network 
     data=1; 
     break; 
    case 'c':    //print and change formation 
characteristics 
     data=2; 
     break; 
    case 'm': 
     data=3; 
     break; 
    case '1':    //print telemetry data for first 
Network 
     whosData = 0;   
     break; 
    case '2':    //print telemetry data for second 
Network 
     whosData = 1;   
     break; 
    case '3':    //print telemetry data for third 
Network 
     whosData = 2; 
     break; 
    case '4':    //print telemetry data for fourth 
Network 
     whosData = 3; 
     break; 
    case '5':    //print telemetry data for fifth 
Network 
     whosData = 4; 
     break; 
    case '6':    //print telemetry data for sixth 
Network 
     whosData = 5; 
     break; 
    case '7':    //print telemetry data for seventh 
Network 
     whosData = 6; 
     break; 
    case '8':    //print telemetry data for eighth 
Network 
     whosData = 7; 
     break; 
    case '9':    //print telemetry data for ninth 
Network 
     whosData = 8; 
     break; 
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    case '0':    //print telemetry data for tenth 
Network 
     whosData = 9; 
     break; 
   } 
  } 
  //delay to create periodic call, as specified by "Index" in the SDK documentation 
  Sleep(10);  
 } 
  
 return 0; 
} 
//Main 
 

/* 
            my_types.h 
 This file defines the telemetry, control, and location types 
 Made a separate file to reduce size of Piccolo.cpp File 
 
 */ 
 
 
#ifndef _MY_TYPES_H 
#define _MY_TYPES_H 
#include<windows.h> 
#include"CommManager.h" 
 
 
typedef struct 
{  
 double Longitude; //from LLA data: Telemtry packet 
 double Latitude; //from LLA data: Telemtry packet 
 double East;  //calculated from LLA data using lla2enu class 
 double North;  //calculated from LLA data using lla2enu class 
 double Up;  //calculated from LLA data using lla2enu class 
 float Altitude;  //from LLA data: Telemtry packet 
 float Velocity;  //from GPS.Speed: Telemetry packet 
 float Beta;  //angle between velocity and direction of nose of plane horizantally 
 float Direction; 
 int Hours; 
 int Minutes; 
 float Seconds; 
 UInt32 Time; 
  
} telemetry; 
 
//data structure to hold control packet data 
typedef struct 
{ 
 float Heading;  //from Yaw reading: Control Data packet 
 float BankAngle; //from Roll: Control Data packet 
 float RollRate;  //from Roll Rate: Control Data packet 
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 float PitchRate; //from Pitch Rate: Control Data packet 
 float YawRate;  //from Yaw Rate: Control Data packet 
 float Aileron; 
 float Elevator; 
 float Throttle; 
 float Rudder; 
 float AirSpeed; 
 int Hours; 
 int Minutes; 
 float Seconds; 
 float Pdynamic; 
} control; 
 
//data structure to hold location of obstacles 
typedef struct 
{ 
 double Lat; 
 double Lon; 
 double Alt; 
} location; 
 
 
typedef struct 
{ 
 int radial_sep; 
 int z_sep; 
 int bearing; 
} formation; 

#endif
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Appendix C – Matlab M-Files 
 
clc,close all 
clear all 
  
%Analysis of Hardware in the Loop Sim with Flight Test  
%Orbit waypoints. Variations in Speed and Convergence 
  
if exist('Alt0x5Bm0x5D') == 0 
    load 23Mar_562_mod_with_ENU.mat 
    disp('File Loading') 
end 
  
%Read in Raw flight data from ".mat" file, and build custom Arrays 
[Clock] = [Clock0x5Bms0x5D/1000,Day,Hours,Minutes,Seconds]; 
[Autopilot] = [rad2deg(Lat0x5Brad0x5D),... 
    rad2deg(Lon0x5Brad0x5D),... 
    Height0x5Bm0x5D... 
    TAS0x5Bm0x2Fs0x5D... 
    Track_Cmd 
    ]; 
  
[Heading] = [rad2deg(Direction0x5Brad0x5D)]; 
  
[Autopilot_Flight] = [Clock,Autopilot]; 
BaseX=503000; 
BaseY=-4884700; 
BaseZ=4057800; 
  
%Waypoint Locations 
WP_latitude = [39.774835; 
               39.774932; 
               39.775029; 
 
               39.775029; 
               39.775029; 
               39.775029; 
               39.775029; 
               39.776001; 
               39.778040; 
               39.779206; 
               39.779789; 
               39.779886; 
               39.779886; 
               39.779983; 
               39.779983; 
               39.779983; 
               39.779983; 
               39.778623; 
               39.777166; 
               39.775709; 
               39.774835]; 
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WP_longitude = [-84.097530; 
                -84.099473; 
                -84.101319; 
                -84.103456; 
                -84.105884; 
                -84.108312; 
                -84.110255; 
                -84.111809; 
                -84.111906; 
                -84.111032; 
                -84.109187; 
                -84.107341; 
                -84.105495; 
                -84.103358; 
                -84.101027; 
                -84.098987; 
                -84.097142; 
                -84.095879; 
                -84.095296; 
                -84.095782; 
                -84.097530]; 
WP_Altitude(1:21) = 400; 
WP_Altitude=WP_Altitude'; 
  
lla=[deg2rad(Autopilot_Flight(:,6)) deg2rad(Autopilot_Flight(:,7)) Autopilot_Flight(:,8)]; 
enu=lla2enu(lla, [BaseX BaseY BaseZ]); 
lla_WP=[deg2rad(WP_latitude) deg2rad(WP_longitude) WP_Altitude]; 
enu_WP=lla2enu(lla_WP, [BaseX BaseY BaseZ]); 
  
%Note enu_WP(:,1), enu_WP(:,2), and enu(:,3) are East, North, Up 
%Coordinates of Flight Plan, respectively 
  
%Similarly, enu(:,1), etc are ENU Coordinates of aircraft's actual path 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%HITL Sim with Flight Test TAS(16m/s), Alt(400m), WPs, Gains%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
begin = 867;  %Line # in 'Clock' array 
end_at = 8438; 
  
%2D-Plot in LLA 
figure('Name',... 
    'HITL Sim  TAS(16m/s), Alt(400m), WPs, Gains',... 
    'NumberTitle','on') 
hold on 
plot(Autopilot_Flight(begin:end_at,7),Autopilot_Flight(begin:end_at,6),... 
    '--k') 
axis equal 
xlabel ('Longitude (deg)') 
ylabel  ('Latitude (deg)') 
title... 
    ('HITL Autopilot Simulation #1 : TAS(16m/s), Alt(400m)') 
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plot(WP_longitude,WP_latitude,'-ro',... 
                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
grid on 
axis equal 
legend({'UAV Flight Path','Desired Waypoints and FlightPath'}); 
print -dmeta '1 HITL Autopilot Sim,LLA,2D,Actual'    
  
  
%2D-Plot in ENU 
figure 
plot(enu(begin:end_at,1), enu(begin:end_at,2)) 
hold on 
plot(enu_WP(:,1),enu_WP(:,2),'-ro',... 
                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
axis square 
grid on 
xlabel('East (m)'); 
ylabel('North (m)'); 
  
axis equal 
grid on 
title('HITL Autopilot Simulation #1 : TAS(16mft/s), Alt(400m)'); 
legend({'UAV Flight Path','Desired Waypoints and FlightPath'}); 
print -dmeta '2 HITL Autopilot Sim,ENU,2D,Actual'     
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plot 3D Waypoint Orbit Track 
figure1 = figure('Name','HITL Sim 3D, Flight Test TAS(16m/s), Alt(400m), WPs, 
Gains','NumberTitle','on') 
axes1 = axes(... 
  'CameraPosition',[-84.13 39.75 2007],... 
  'CameraUpVector',[0.1859 0.1775 1.915e+005],... 
  'Parent',figure1); 
axis(axes1,[-84.11 -84.09 39.77 39.78 -300 -400]); 
title(axes1,'HITL Autopilot Simulation #1 : TAS(16m/s), Alt(400m)'); 
xlabel(axes1,'Longitude (deg)'); 
ylabel(axes1,'Latitude (deg)'); 
zlabel(axes1,'Altitude (m)'); 
grid(axes1,'on'); 
hold(axes1,'all'); 
plot3(Autopilot_Flight(begin:end_at,7),... 
    Autopilot_Flight(begin:end_at,6),... 
    Autopilot_Flight(begin:end_at,8),'Parent',axes1); 
grid on 
hold on 
axis equal 
plot3(WP_longitude,WP_latitude,WP_Altitude,'-ro',... 
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                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
axis square 
legend1 = legend(axes1,... 
{'UAV Flight Path','Desired Waypoints,Flight Path, and Altitude (400m)'},... 
'Position',[0.2723 0.3165 0.6554 0.1]); 
zlim([1000 1400]) 
print -dmeta '3 HITL Autopilot Sim,LLA,3D,Actual' 
  
%%3D-Plot in ENU Coordinates 
figure2 = figure('Name','HITL Sim 3D, Flight Test TAS(16m/s), Alt(400m), WPs, 
Gains','NumberTitle','on') 
axes2 = axes(... 
  'CameraPosition',[0 1000 -200],... 
  'CameraUpVector',[0.1859 0.1775 1.915e+004],... 
  'Parent',figure2); 
  
plot3(enu(begin:end_at,1), enu(begin:end_at,2), enu(begin:end_at,3),'Parent',axes2); 
hold on 
plot3(enu_WP(:,1),enu_WP(:,2), enu_WP(:,3),'-ro',... 
                'LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[.49 1 .63],... 
                'MarkerSize',12); 
xlabel(axes2,'East (m)'); 
ylabel(axes2,'North (m)'); 
zlabel(axes2,'Up (m'); 
axis(axes2,[500 2500 1700 2600 -400 -300]) 
title('HITL Autopilot Simulation #1 : TAS(16m/s), Alt(400m)'); 
zlim([-400 -300]); 
grid on 
axis square 
legend2 = legend({'UAV Flight Path','Desired Waypoints,Flight Path, and Altitude (400m)'},... 
'Position',[0.2723 0.3165 0.6554 0.1]); 
print -dmeta '4 HITL Autopilot Sim,ENU,3D,Actual'    
           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%            
%TAS and Altitude versus Time 
figure('Name','HITL Sim TAS and Alt, Flight Test TAS(16m/s), Alt(400m), WPs, 
Gains','NumberTitle','on') 
subplot(2,1,1) 
plot(Autopilot_Flight(begin:end_at,1),Autopilot_Flight(begin:end_at,9)) 
xlabel ('Time (s)') 
ylabel  ('Airspeed (ft/sec)') 
grid on 
subplot(2,1,2) 
plot(Autopilot_Flight(begin:end_at,1),Autopilot_Flight(begin:end_at,8),'k') 
hold on 
xlabel ('Time (s)') 
ylabel  ('Altitude (ft)') 
plot(time, WP_Altitude(1),'-ro',... 
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                 'LineWidth',2,... 
                 'MarkerEdgeColor','k',... 
                 'MarkerFaceColor',[.49 1 .63],... 
                 'MarkerSize',5); 
grid on 
avg_TAS_Actual1 = (sum(Autopilot_Flight(begin:end_at,9)))/length(Autopilot_Flight(begin:end_at,9)) 
print -dmeta '5 HITL Autopilot Sim,TAS Alt,Actual' 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%DEVIATIONS AT WAYPOINT CALCULATIONS%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
i=1; 
for(counter=begin:1:end_at) 
    if(Autopilot_Flight(counter,10)~= Autopilot_Flight(counter+1,10)) 
      indices_at_hitting_waypoints(i)=counter; 
      waypoint_index(i)=Autopilot_Flight(counter,10); 
      time(i)=Autopilot_Flight(counter,1); 
      i=i+1; 
    end 
end 
  
for(counter=1:length(indices_at_hitting_waypoints))     
    for(j=begin:end_at) 
        east_deviation(j)=(enu(j,1)-enu_WP(waypoint_index(counter)+1,1)); 
        north_deviation(j)=(enu(j,2)-enu_WP(waypoint_index(counter)+1,2)); 
        xy_deviation(j)=sqrt(east_deviation(j)^2+north_deviation(j)^2); 
    end 
    [junk(counter), index(counter)]=min(xy_deviation(begin:end_at)); 
    index(counter)=index(counter)+begin;  
    alt_deviation_at_waypoints(counter)=((Autopilot_Flight(index(counter),8)-
WP_Altitude(waypoint_index(counter)+1))); 
    east_deviation_at_waypoints(counter)=east_deviation(index(counter)); 
    north_deviation_at_waypoints(counter)=north_deviation(index(counter)); 
    xy_deviation_at_waypoints(counter)=xy_deviation(index(counter)); 
end 
  
avg_alt_deviation_at_waypoints = sum(abs(alt_deviation))/length(alt_deviation) 
avg_xy_deviation_at_waypoints = 
sum(abs(xy_deviation_at_waypoints))/length(xy_deviation_at_waypoints) 
maximum_xy_deviation=max(xy_deviation_at_waypoints) 
maximum_alt_deviation=max(alt_deviation_at_waypoints) 
  
  
%XY-Deviation at Waypoints 
figure 
plot(time, xy_deviation_at_waypoints); 
hold on 
plot(time, 0,'-ro',... 
                 'LineWidth',2,... 
                 'MarkerEdgeColor','k',... 
                 'MarkerFaceColor',[.49 1 .63],... 
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                 'MarkerSize',5); 
xlabel('Time'); 
ylabel('XY-Deviation at Waypoints (ft)'); 
axis([Autopilot_Flight(begin) Autopilot_Flight(end_at) 0 300]) 
grid on 
title('HITL Autopilot Simulation #1 : TAS(16m/s) Alt(400m)'); 
legend({'UAV Flight Path','Desired Waypoints and FlightPath'}); 
print -dmeta '6 HITL Autopilot Sim,XY-Deviation,Actual' 
 
 
Note that similar codes were used to import and analyze formation data.  The names of 
variables and particular graphs were changed, but the methods were the same. 
 



 

135 

Appendix D – Flight Test Cards 

Single A/C Waypoint TrackingPat-1
TASK ID TASK

FIXED PARAMETERS

VARIED PARAMETERS

FLIGHT PHASE TASK DESCRIPTION

TEST PROCEDURE

PILOT

TEST ENGINEER/PILOT NOT FLYING

Low Altitude Cruise

PILOT DATE RUN NUMBER

1. Maintain straight and level flight on straightaway of racetrack 
pattern

2. Switch to autonomous flight, record data for 3 racetrack loops
3.  Change gains, repeat.

Single A/C Waypoint Tracking

EVALUATION SEGMENT LONG CHR LAT/DIR 
CHR

Waypoint Tracking

Normal autonomous flight under varying airspeeds and track 
convergences.  Deviation at waypoints will be recorded.

EVALUATION BASIS

PERFORMANCE STANDARDS

2-D Deviation from Waypoints (m)

TARGET DESIREDADEQUATE

050,250

Deviation in Altitude (m) 0

±20

±1
0

±60

±50

Initial Position:
Straight and level 
flight
Altitude 400m

Start Evaluation: Straight and level flight
End Evaluation: Straight and level flight

Track 
Converge

nce

Speed (m/s)

16,20

Deviation in Airspeed (m/s) 0 ±1 ±3

Flight Plan: 

Area B Racetrack 
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Single A/C Turning RadiusPat-2
TASK ID TASK

FIXED PARAMETERS

VARIED PARAMETERS

FLIGHT PHASE TASK DESCRIPTION

TEST PROCEDURE

PILOT

TEST ENGINEER/PILOT NOT FLYING

Low Altitude Cruise

PILOT DATE RUN NUMBER

1. Maintain straight and level flight on straightaway
2. Switch to autonomous flight, record data for 4 turns
3.  Change airspeed, repeat

Single A/C Turning Radius

EVALUATION SEGMENT LONG CHR LAT/DIR 
CHR

Turning Radius

Following a straight line path between two waypoints.  Studying the 
minimum turning radius at various airspeeds.

EVALUATION BASIS

PERFORMANCE STANDARDS

Turning Radius (m)

TARGET DESIREDADEQUATE

75,125,1
75

50

Deviation in Altitude (m) 0

±50

±2
0

±100

±50

Initial Position:
Straight and level 
flight
Altitude 400m

Start Evaluation: Straight and level flight
End Evaluation: Straight and level flight

Track 
Converge

nce

Speed (m/s)

12,16,20

Deviation in Airspeed (m/s) 0 ±1 ±3

Flight Plan: 

East-West Straight Line 
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Formation Flight Time DelayPat-3
TASK ID TASK

FIXED PARAMETERS

VARIED PARAMETERS

FLIGHT PHASE TASK DESCRIPTION

TEST PROCEDURE

PILOT

TEST ENGINEER/PILOT NOT FLYING

Low Altitude Cruise

PILOT DATE RUN NUMBER

1. Maintain straight and level flight on straightaway
2. Switch to autonomous flight, command new lead airspeed
3.  On next straightaway, command new altitude

Formation Flight Time Delay – Airspeed and Altitude Changes

EVALUATION SEGMENT LONG CHR LAT/DIR 
CHR

Time Delay

Flying a straight-line path in formation with C++ code turned ON.  
Lead will be commanded new airspeeds and altitudes and trail will 
follow.

EVALUATION BASIS

PERFORMANCE STANDARDS

Time Delay (s)

TARGET DESIREDADEQUATE

3 ±2 ±5

Initial Position:
Straight and level 
flight
Altitude 400m

Start Evaluation: Straight and level flight
End Evaluation: Straight and level flight

Lead Track 
Convergence: 

50

Lead Speed 
(m/s)

14-20

Flight Plan: 

East-West Straight Line 

Lead Altitude 
(m)
330-380

Lead Altitude: 
330m
Trail: 50m above 
Lead
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Formation Flight TrackingPat-4
TASK ID TASK

FIXED PARAMETERS

VARIED PARAMETERS

FLIGHT PHASE TASK DESCRIPTION

TEST PROCEDURE

PILOT

TEST ENGINEER/PILOT NOT FLYING

Low Altitude Cruise

PILOT DATE RUN NUMBER

1. Maintain straight and level flight on straightaway
2. Run C++ code
3. With trail flying same Area B Racetrack as lead, 100-250m 

behind in straightaway, similar headings, switch trail to 
autonomous 

3. Fly 3 passes
4. Vary airspeed or track convergence
5. Repeat Steps 3-4
6. Switch back to manual control, press ‘X’ to exit C++ code.

Formation Flight Tracking

EVALUATION SEGMENT LONG CHR LAT/DIR 
CHR

Formation Flight Tracking

Formation flying with simulated lead aircraft.  Vary lead aircraft’s 
speed and track convergence.  Trail flying 50m above lead.

EVALUATION BASIS

PERFORMANCE STANDARDS

2-D Formation Separation  (m)

TARGET DESIREDADEQUATE

60 ±20 ±50

Initial Position:
Straight and level 
flight
Altitude 400m

Start Evaluation: Straight and level flight
End Evaluation: Straight and level flight

Lead Speed 
(m/s)

16,20

Flight Plan: 

Area B Racetrack 

Lead Track 
Convergence

50,250

Lead Altitude: 
350m
Trail: 50m above 
Lead
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Appendix E – Flight Test Results 

This Appendix includes the results of flight testing that was conducted after the 

defense of this thesis.  The results were appended to the document after it was 

complete. 

 Several flight tests were conducted.  Due to time constraints, no single aircraft 

performance characterization maneuvers were performed.  Instead of flying a 

simulated lead aircraft with trail aircraft in the sky, it was deemed that a simulated 

trail aircraft would be safer for the first time using the formation flight controller in 

flight tests.  The setup was identical to that described in Chapter V, except the trail 

was the simulated aircraft and the lead was flown on “Manual” mode by the R/C 

pilot.  Flying autonomously was impossible on this day due to issues with the pitot-

static tube.  The airspeed of the airborne aircraft fluctuated between proper readings 

and zero.  Without an accurate measure of TAS, autonomous flight would be 

disastrous.  The flight tests that were conducted included airspeed and altitude 

changes, and a formation flight around the Area B racetrack.  The altitude changes are 

shown in Figure 95. 
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Figure 95 - Flight Test: Altitude Change 

The lead aircraft was flown by the R/C pilot, so all maneuvers will not be as fluid 

as autonomous flight may have achieved.  Flying in a racetrack pattern, the pilot raised 

the altitude of the lead aircraft while maintaining airspeed.  As Figure 95 shows, the lead 

aircraft climbed approximately 70m.  The time delay was even more significant that 

HITL simulations predicted, with the trail not beginning its climb until 12 seconds after 

the lead.  This error can be attributed to the problems with the pitot-static tube in the lead 

aircraft.  Fluctuations in lead TAS sent equally fluctuating commands to the trail.  Figure 

96 shows an airspeed change in the lead.  The time delay here is impossible to tell 

because of the lead aircraft’s TAS fluctuation.  Altitude was also not properly held 

constant during this flight test. 
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Figure 96 - Flight Test: Airspeed Change 

Figure 97 and Figure 98 show the results of the formation flight around a racetrack.  

Again, due to fluctuating lead airspeeds, the trail wasn’t able to maintain any semblance 

of satisfactory formation flight.  The desired waypoints moved properly along with the 

lead aircraft, but as Figure 98 shows, the trail airspeed never really changes because it is 

constantly seeing extreme fluctuations in lead airspeed.  It is being commanded such 

extreme airspeed changes that it doesn’t have any time to react.  The exact formation 

separations were not calculated, because proper flight testing will be conducted in later 

research after the issues described above are fixed.  The important thing to draw from 

these flight tests are that the formation flight controller functioned properly.  One other 

thing to consider when analyzing Figure 97 and Figure 98 is that the lead aircraft was 
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being flown manually, not autonomously.  Therefore, the lead aircraft wasn’t intending to 

fly the exact track pictured.  The waypoints are merely guidelines given to the R/C pilot 

to give him an idea of the desired racetrack.   
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Figure 97 - Flight Test: Formation Flight 
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Figure 98 - Flight Test: Formation Flight 
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